
Université catholique de Louvain
Ecole polytechnique de Louvain
Institut de Mécanique, Matériaux et Génie Civil

Development and validation of a
2D Vortex Particle-Mesh method

for incompressible multiphase
flows

Gaël Lorieul

Jury:
Pr. R. Ronsse (UCL, chairman)
Pr. Y. Bartosiewicz (UCL, supervisor)
Pr. P. Chatelain (UCL, supervisor)
Dr. V. Deledicque (Bel V)
Pr. P. Brancher (IMFT, Toulouse)
Pr. G. Winckelmans (UCL)
Pr. J-F. Remacle (UCL)
Pr. L. Bricteux (UMons)

Louvain-la-Neuve,
August 2018

©2018
Gaël Lorieul

All Rights Reserved

Abstract

The motivation of the present thesis is to assess the potential gains that Vor-
tex Particle-Mesh methods could bring to numerical simulations for the nu-
clear industry, and in particular to pool-type reactors using heavy liquid metal
coolants. One such reactor is the Belgian MYRRHA Gen IV prototype reactor.
Indeed, the flow taking place within the vessel (i) tends to be highly-advective
and (ii) has local sources and sinks of momentum that generate global motion
of the coolant in much greater volumes. Those conditions makes the use of
Vortex Particle-Mesh method potentially attractive.

The present thesis develops a Vortex Particle-Mesh method for multiphase
flows with heat transfer. Starting from an existing VPM solver for single phase
flows, features are added (such as level set or smeared interface methods), nu-
merical difficulties are studied and solutions to the latter are proposed. The cor-
rectness of the resulting VPM solver is assessed on popular CFD benchmarks,
and its performance both in terms of accuracy and computational efficiency is
compared to the one of a traditional velocity-pressure solver. Eventually a case
of study similar to those that could be encountered in nuclear reactors is run
to demonstrate the relevance of the solver for industrial flows.

v

vi

One difficulty is that it is far easier
to produce numbers from a computer
than understand their relevance to real flows.

Saffman and Baker, Vortex interaction
in 1979 Annual Review of Fluid mechanics

(a) CIC interpolation
scheme

(b) A simulation result (c) Slinging of particles
due to circular motion

Figure 1: Figures from Christiansen’s original 1970 lab report [1] where the
Vortex Particle-Mesh (aka Vortex-in-Cell) method was introduced for the first
time in the History of CFD.

viii

ix

Acknowledgements

A PhD is never the work of a single person. Here, I would like to express my
gratitude to all people who made a significant contribution to either my work
or more generally to my experience as a PhD student. Also, as a forreigner
who came to Belgium especially to pursue that PhD, and who will move to
another country after its completion, the “PhD experience” does not limit itself
to what happens at the workplace but to everything that I have experienced
during my stay here in Belgium.

Firstly, I would like to thank my supervisors Prof Yann Bartosiewicz and
Prof Philippe Chatelain for their help all along the thesis. Their support was
valuable both regarding the scientific aspects and the writing or preparation
of scientific communications, which includes the present dissertation. Also
for their patience and openness, especially when faced my doubts or when
discussing against my contradictory opinions. Furthermore, I would like to
mention the support of Laurent Bricteux and Matthieu Duponcheel, members
of my “comité d’accompagnement”.

BelV represented by Vincent Deledicque without the funding of which this
PhD could never have existed. Thank you for putting your trust in me, espe-
cially at the "PhD confirmation" step where much was to be achieved yet. I
hope that the content of the present document satisfies your expectations.

I would also like to thank Pierre Brancher, Grégoire Winckelmans, Jean-
François Remacle, Laurent Bricteux and Renaud Ronsse, the members of my
“jury de thèse” for their careful reviewing of the present document.

Prof Dr.-Ing. Ernst von Lavante for convincing me into doing a PhD. Pursu-
ing a PhD programme is often associated with learning bleeding-edge technical
skills. This is certainly true, however in my case I think the biggest benefit
was all the non-technical skills that I developped. This PhD was an excellent
exercise to learn how to set, follow & achieve objectives, manage my personnal
motivation through ups and downs as well as keeping a constant level of hard
work. In other words, it was a way to get closer from Freedom. I am really
happy to have made the decision of doing a PhD, and if it wasn’t for you,
professor Lavante, I might have chosen otherwise. . .

My parents for your understanding when I decided to go for a PhD even-
though that was not what you had in mind, for supporting me throughout the
PhD and for your involvment in my education from my (very) early years. Also
thank you Mom for taking the decision to stay at home during a large part of
your life so that you could spend the entirety of your time breeding my brother
and I, despite the underlying risks and sacrifices.

The people at the TFL for their friendliness, with special mentions to (in
alphabetical order): Subir Bhaduri, Frank Hesbois, Haddy Mbuyi Katshiatshia,
Ehsan Tavakoli and Jie Zheng. Many thanks to Isabelle Hennau, the kind fairy
who takes care of all the logistics at the TFL so that the life of everyone else
can run smoothly (and who delivers “Christmas presents” all year long. . .).

x

Subir, you showed me that the world had plenty of opportunities to offer.
You have been able to move out from India and to live for more than three
years here in Belgium, all that out of a mere online PhD offer and a Skype
interview. You got out of your PhD with no clear idea in mind and eventually
you went on to work at an NGO then started your own business, undertaking
projects that seem truly meaningful in respect to your ideals. I used to fear the
future and take conservative decisions that narrowed my perspectives. Thanks
to you I am more confident and open to life and whatever it might reserve for
myself.

Ehsan, I am very impressed by your strong-will, your sense of sacrifice and
your hard work. For keeping your friendliness and taking some of your precious
time to explain things to me, even in the harshest and most stressful moments
for you. We haven’t met for very long but your sense of struggle is very in-
spiring to me and also reminds me of the privilege that I may have thanks to
my roots or schooling path. I heartfully wish you the best for yourself and the
laboratory you are establishing. May you keep strong and follow your path,
despite the interference of geopolitical events that are far beyond your control.

I would also like to thank mathematics professors Luc Haine, Augusto Ponce
and Paolo Roselli for welcoming me into their classes eventhough I sometimes
lacked some prerequisites. Thanks to teaching assistant Justin Dekeyser for
answering my (sometimes naïve) questions. Following these classes allowed
me to better appreciate the difference in problem-solving approach between
engineers and mathematicians. Understanding the mathematicians’ way-of-
thinking and sense of aesthetics now allows me to read any mathematical text,
not just those written by engineers for engineers: Mathematics with little to
no calculations, where emphasis is given to concepts, curiosity and exploration.
Thanks to you, a wide field of knowledge and science is now accessible to me,
let alone a way of seeing the World.

Similarly, I would like to thank professor Kim Mens for welcoming me in
his software development class. Following this lecture gave me a broader sight
on the existing software development techniques used in the industry, helped
me become a better programmer and made me understand what research in
computer sciences is about. But beyond this it was also an excellent opportu-
nity for me to evaluate the software development skills I have gained during my
PhD as I was developping a C++ CFD code against thee of soon-to-gratuate
master students, and hence know better where I stand. All of this will defini-
tively be very useful to me since I will soon be looking for a job, and that it is
very likely for it to have a software development component.

A special thought to professor Paolo Rosseli. Eventhough we don’t know
each other so well, I must say that I am very impressed by your ability to ex-
plain things simply, your humility, your acceptation of contradiction and doubt,
your friendliness, your open-mindness to seek collaboration with people outside
your field and your positive problem-solving attitude, all that on top of your
“ordinary” research activities. This is a lot for a single person and your exam-
ple is very inspiring to me. I wish you best luck with your work on unearthing
the Clifford algebra theory and using it to solve practical engineering prob-

xi

lems. I was delighted to learn the excellent results you achieved in 2D gestual
recognition and wish you the same success in the much more difficult 3D case. . .

I would also like to thank the anonymous crowd behind the free (as in free-
dom) software tools that I have been using since high school and without which
this thesis would have been a lot more difficult and expensive to pursue. Also
a thought to people like Aaron Schwartz or Alexandra Elbakyan who struggle
to make the research world a better place, sometimes at the sacrifice of their
own lives.

To all the friends that I met during my stay in Belgium for their company
and shared experiences: Séverine, Louisa, Yafei, Anthony, Donovann, Ana,
Priscilla, and so many others.

The Tori Kago Ju-jutsu dojo for showing me a different side of Belgium (not
every Walloonian works at the university !) and for helping me gain confidence
in myself and in my relation to others. Also the partnership with Segawa dojo
and our membership at the VJJF was a good opportunity to have a glimpse into
Flanders. Of course, I must mention Stephane Piret’s passion and dedication1,
as well as the good-spirit of all members, without which the dojo would not
exist.

The Brussels Manneke Piss Hash House Harriers for the cheers and its Beer
Meister Snakes & B. for making me discover the wide variety of Belgian brews2.

Higgins, it is a pleasure to have crossed paths with you. You showed me
that one could always be cheerful, open to discussion and convincing at the
same time. Rest assured that your teachings of Disasterism will not be forgot-
ten. . .

On on to whatever awaits in the future ! As long as there are two blobs or
more, I’ll know where to go!

Que sera, sera
Whatever will be, will be
The future’s not ours, to see
Que Sera, Sera
What will be, will be

1Eventhough I am quite sure he will not like to see his name being pushed forward. . . :P
2The other Beer Meisters have done an amazing job too but Snakes was first! (and she

over-achieved as usual!)

xii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation for the present study 3
1.3 Lagrangian Vortex methods . 5

1.3.1 Eulerian, Lagrangian and Eulerian-Lagr. methods . . . 5
1.3.2 Vortex methods and velocity-pressure formulation . . . 8
1.3.3 A first general choice: Lagrangian vortex methods . . . 9

1.4 Vortex Particle-Mesh methods 9
1.4.1 Particle-particle and particle-mesh methods 9
1.4.2 Classification by discretization 11
1.4.3 Extensibility to 3D . 15
1.4.4 Arguments in favor of the VPM method 16

1.5 Modern and/or relevant VPM methods 16
1.6 Research questions . 18

2 Single-fluid VPM method 21
2.1 Governing equations . 21
2.2 Some important conventions and definitions 22

2.2.1 Systems of coordinates 22
2.2.2 Frames of reference . 23
2.2.3 Discretization of space 23

2.3 Numerical method . 24
2.3.1 Discretization of space 24
2.3.2 General algorithm of the VPM method 26
2.3.3 Interpolating between particles and grid 26

2.4 Enforcing boundary conditions 30
2.4.1 Free-slip boundary conditions 30
2.4.2 No-slip boundary conditions 30

2.5 Summary . 33

3 Interface capturing VPM method 35
3.1 Selecting an interface capturing method 35

3.1.1 Front tracking . 36
3.1.2 Particle methods . 37
3.1.3 Level set . 38
3.1.4 Volume of fluid . 38

xiii

xiv Contents

3.1.5 Hybrid methods . 39
3.1.6 Recent evolutions . 39
3.1.7 Chosen method . 40

3.2 Level set method . 40
3.2.1 Updating the level set field to follow the interface 41
3.2.2 Boundary conditions for level set 42
3.2.3 Non-smoothness of level set field 43
3.2.4 Level set reinitialization 43
3.2.5 Local level set method 48
3.2.6 Strategies to trigger level set reinitialization 52

3.3 Particle-based level set . 54

4 Computing the phase- and interface-dependent terms 57
4.1 Surface tension term . 57

4.1.1 Level set “Flip-flop” mode 59
4.1.2 Computation of curvature 66

4.2 Viscous term . 69
4.2.1 Single-fluid model . 69

5 High mass-density ratio VPM method 73
5.1 Introduction . 73

5.1.1 Interface modelling methods 73
5.1.2 Smeared interface vortex methods 74
5.1.3 Buoyancy numerical instability 75

5.2 One-dimensional model of the instability 75
5.2.1 General view on the problem 75
5.2.2 Simplified governing equations 76
5.2.3 Simplified geometry . 77
5.2.4 Non-dimensionalization of problem 78
5.2.5 Discretization of the material derivative 79
5.2.6 Governing equation on errors 80
5.2.7 General sequence describing the instability 81
5.2.8 Results with 1D model 82

5.3 Comparison of 1D model against 2D simulations 86
5.3.1 Comparison of material acceleration Dtv profiles 86
5.3.2 Comparison of convergence rates of error norm E 87
5.3.3 Comparison of critical mass density ratio ρ+/ρ− values 90
5.3.4 Summary . 90

5.4 Achieving stability through under-relaxation 91
5.4.1 Ideal under-relaxation 91
5.4.2 Alternative to ideal under-relaxation 93
5.4.3 Results of under-relaxation 94
5.4.4 Comparison of 1D model against 2D VPM solver 95

5.5 Harmonic analysis of the instability 95
5.6 Practical view on the buoyancy numerical instability 99

5.6.1 Influence of the under-relaxation factor α 100
5.6.2 Influence of the time integrator 100
5.6.3 Influence of the mass density profile 102

Contents xv

5.6.4 Measuring the “unstableness” of a method 104
5.7 Summary . 105

6 Numerics and solver validation 107
6.1 Overview of the benchmarks . 107

6.1.1 Benchmarks assessing the interface capturing method . 107
6.1.2 Benchmarks assessing the computation of surface tension 108
6.1.3 Benchmarks on complex flows 108

6.2 Definition of criteria . 113
6.2.1 Criteria used in benchmarks 113
6.2.2 Numerical calculation of criteria 114

6.3 Dimensionless numbers . 118
6.4 An Eulerian velocity-pressure solver to compare to 119
6.5 Numerical parameters of the solver 121
6.6 Numerical investigations . 121

6.6.1 Choice of level set reinitialization strategy 121
6.6.2 Choice of the surface tension term 122
6.6.3 Appearance of trenches 123
6.6.4 Choice of tangential filter for the level set field 123
6.6.5 Influence of missing term in Thirifay’s formulation . . . 124
6.6.6 Influence of under-relaxation on simulations’ output . . 125
6.6.7 Comparison of elliptic and parabolic vorticity solvers . . 128

6.7 Validation of the VPM level set method 133
6.8 Validation of surface tension . 139
6.9 Validation of full solver . 145

6.9.1 Computational efficiency 152
6.10 Simulations and extension to heat transfer 154

6.10.1 VPM method with heat transfer 155
6.10.2 Influence of Prandtl number 157
6.10.3 Simulation of nuclear-like cases 157

6.11 Summary . 159

7 Conclusions and perspectives 161
7.1 General conclusion . 161
7.2 Achievements and research results 162

7.2.1 Answers to research questions 162
7.2.2 Summary of the work accomplished 163

7.3 Perspectives . 165

A Timeline of some methods 187

B Weno5 schemes 189

C Algorithms 191
C.1 Level set . 192

C.1.1 Hamilton-Jacobi reinitialization 192
C.1.2 Fast Marching Method for reinitialization 193

C.2 VeloGrid: Eulerian velocity-pressure solver 195

xvi Contents

C.3 Vortex Particle-Mesh . 196

D Time-integrators 199
D.1 Euler-Explicit . 199
D.2 RK2 Midpoint . 200
D.3 Another RK2 time-integrator 200
D.4 A low storage RK3 time-integrator 201

E Fluid properties 203

F Proofs and justification 209
F.1 Single-fluid VPM method . 209

F.1.1 Procedure to obtain velocity from vorticity (Eq. 2.3) . . 209
F.2 Interface capturing VPM method 210

F.2.1 Equivalence between Rouy scheme and upwinding . . . 210
F.2.2 Level set flip-flop . 212

F.3 Viscous term . 212
F.3.1 Correct expansion of viscous term (Eq. 4.37) 212

F.4 High mass-density ratio VPM method 213
F.4.1 Material acceleration sequence for any time integrator

(Eq. 5.32) . 213
F.5 Numerics and solver validation 214

F.5.1 Volume calculation using mollifier 214

G Viscous term in vorticity equation 215

Chapter 1

Introduction

1.1 Context
The last decade has seen a dramatic reshuffling of the energy geopolitics: deple-
tion of traditional oil and gas reserves, emergence of new fossil reserves (access
to arctic oil and gas [4], oil sands [5], shale gas [6]) mostly in regions other
than the traditional oil and gas extracting countries, steady development and
improvement of renewable technologies, nuclear reactors reaching the end of
their original lifespan in Western countries, etc.

In the same time, the needs of customers and nations have been evolving.
Indeed, while the energy needs of emerging and developing countries continues
to follow exponential growth, developed countries see their energy consumption
stagnate (Fig. 1.1a). At the same time, the need for clean energy is stronger
than ever, be it in terms of emission of greenhouse gases, NOx or microparticles.
Eventually many countries pursue more self-reliance in their energy supply1.

Given its geopolitical situation, each state decides on an energy mix that
aims at combining the strength of each energy source: kWh price, steadiness
of energy production, volumes of energy that can be produced, availability of
the fuel, response time to demand fluctuations, compatibility with the electric
grid2, environmental cost and consequences on public health (Fig. 1.1b), etc.
In an effort to always keep improving the competitivity of the nuclear energy,
and for it to remain an energy of choice in those mixes in the decades to come,
the nuclear industry addresses several challenges. The first concerns its safety,
which has attracted a renewed public attention after the 2011 Fukushima-
Daiichi accident, as well as the public defiance regarding the plans for lifetime
extension plans of existing reactors in Western countries. The second is the

1Post-Fukushima Japan is a good example of the economic pressure related to energy
imports. Indeed, after being forced to shut down their nuclear facilities due to public hostility,
its government had to open them again to compensate for the economic imbalance caused
by the energy imports [7] [8].

2The energy supplied by renewable technologies fluctuates greatly in time [12], which can
lead either to a blackout of the grid if the supply is insufficient [13], or a need to evacuate
the excess energy if it is overpowered, sometimes through exports at negative prices [14]. To
protect its grid from an overflow of German electricity, Poland and Czech Republic installed
phase-shifting transformers at their German border [15].

1

2 Chapter 1. Introduction

(a) Primary Energy Consumption
(Quad BTU) (Source : [9]).

(b) Heavy smog on 24 Oct 2014 in Bei-
jing (Photo: [10]).a

aCoal facilities are large contributors
to the Beijing smog, hence the authori-
ties plan to substitute them with nuclear
power plants [11].

Figure 1.1: Energy consumption and environmental considerations

cost of nuclear energy, not only the cost of construction and operation but
also that of decommissioning and nuclear waste management & storage. Last
but not least, the long lifespans of nuclear reactors make the preservation of
the accumulated know-how in nuclear reactor construction difficult over the
decades, and generates substantial additional costs when a new reactor must
be built after a long pause in construction [16].

The nuclear industry proposes two solutions to this problem. The first is to
radically change the size of the plants and sell them as energy production units
that are low-maintenance, resilient, reliable and assembled through continuous
production : those are Small Modular Reactors (SMR)3 (Fig. 1.2a). They are
targeted towards isolated regions as a substitute to diesel generators currently
used, in particular in the Canadian Arctic. The second is to have a technological
change in the reactor design, but keep the unit-production and large-scale plant
paradigms : those are GenIV reactors and aim to address the bulk of the energy
demand.

Of all the possible GenIV reactor technologies, Lead and Sodium cooled
Fast Reactors (resp. LFR and SFR) have very interesting features including
long term refueling, nuclear waste produced both in smaller amounts and with
much shorter half-times, as well as passive cooling on shutdown through natural
convection. This allows to produce electricity at greater efficiency, with even
higher safety standards, using more commonly available fuel and with a reduced
environmental footprint.

For those reasons, Belgian research center in nuclear energy SCK•CEN
decided to focus on the Heavy Liquid Metal (HLM) technology and is cur-
rently designing the MYRRHA demonstrator (Fig. 1.2b) [17]. It uses lead as
a coolant and has a pool-type configuration. Those two technical decisions
have a large impact on the reactor’s design at all scales and give rise to new
technical challenges, including safety challenges. As one of Belgium’s Technical

3https://energy.gov/ne/benefits-small-modular-reactors-smrs

https://energy.gov/ne/benefits-small-modular-reactors-smrs

1.2. Motivation for the present study 3

(a) The SEALER design, an example
of liquid metal Small Modular Reac-
tor.

(b) A former design of the MYRRHA
reactor, a large-scale liquid metal re-
actor.

Figure 1.2: Two liquid metal reactor designs.

Safety Organizations (TSO), our partner Bel V (who is financing this thesis)
is responsible of MYRRHA’s commissioning and must assess the safety risks it
might pose.

1.2 Motivation for the present study
As for most devices involving fluid flows, nuclear reactors are designed with
the help of both experiments and CFD simulations. Those are helpful to assist
the general design of the nuclear reactor and also to assess the safety risks. Al-
though the design of nuclear facilities encourages caution and hence the use of
well established CFD simulation methods, the nuclear industry has historically
played a very important role in the development of novel CFD methods, in par-
ticular multiphase methods for bubbly and boiling flows. This was motivated
by the inability of the commercial codes of those days to model accurately such
physical phenomena that are critical in the design process of a nuclear reactor.

On the other hand, the Vortex Particle-Mesh method, also known as Vortex-
in-Cell method has proven itself to be very useful for simulating the wakes of
aircraft and wind turbines. The VPM method has long been used both in
academia and by industries to help address practical engineering problems. As
an example, several partnerships and contracts have been performed between
the Université catholique de Louvain (UCL) and industries, including energy
company Engie. Also the UCL spin-off WaPT is currently working in part-
nership with the European air traffic manager Eurocontrol. More generally,

4 Chapter 1. Introduction

(a) Loop-type reactor (b) Pool-type reactor

Figure 1.3: Simplified schematics of loop- and pool-type reactors.

several research groups are interested in those methods such as the Techni-
cal University of Denmark, the Université Grenoble-Alpes, ETH Zürich or the
California Institute of Technology. The VPM method is therefore well estab-
lished in those fields. However to our best knowledge it has never been used
in the nuclear industry. Therefore, this thesis aims at assessing the potential
usefulness of the VPM method for nuclear applications.

It has been shown in a 2005 article by Hieber and Koumousakos [18] that
the VPM method can be very effective at capturing fluid interfaces in the spirit
of the level set method. Unlike the more common loop-type reactors (Fig. 1.3a),
pool-type nuclear reactors such as MYRRHA have a fluid interface (Fig. 1.3b)
whose dynamics is commonly studied with CFD for the reactor design and
safety assessment. In particular sloshing simulations have become increasingly
popular [19]. Moreover, the reasons for the attractiveness of VPM methods in
the simulation of wakes are that (i) the flows take place in large or unbounded
domains and (ii) the Reynolds number is high. Pool type reactors having large
vessels, the simulation of advection-dominated interfacial fluid flows in those
domains appears as a good application case for VPM.

An example of such situation is the conjugated heat transfer at the contact
line on the vessel’s walls. In pool type reactors, there is a fluid interface sep-
arating the liquid metal coolant from the cover gas (e.g. argon). That fluid
interface reaches the vessel’s and internals’ walls where it forms contact lines.
Globally the fluid interface is flat, but it does not remain perfectly still. Indeed,
the jet exiting the fuel core and the fluid channelled into the heat exchangers,
amongst other things, generate small interface oscillations. Those oscillations
propagate to the contact line at the walls and makes it move up and down
in time with small amplitude. This is described by Figure 1.4, which shows
the coolant phase () and cover gas phase () separated by a fluid
interface (). With time the contact line () at the wall () moves
up and down. Therefore, there is a thin region of the wall (highlighted in the
figure) that is at times immersed in the (liquid metal) coolant (Fig. 1.4c), where
heat transfers are very strong, and in contact with the cover gas (Fig. 1.4b) the

1.3. Lagrangian Vortex methods 5

(a) t = t1 (b) t = t2 (c) t = t3

Figure 1.4: Unsteady heat transfers at a wall with oscillating free surface.
() is the coolant, () the cover gas, () a solid wall, () the
contact line, and () the heat transfers.

rest of the time, where heat transfers are much weaker. Hence, that region of
the wall is subject to heat fluxes () whose intensity is strongly fluctuating
in time. This can lead to thermal stripping of the walls’ material. The fact that
the flow takes place in large volumes and that it is driven by advection phe-
nomena (interface motion) makes VPM methods desirable for such practical
problems.

Since its inception in the 30s, the field of CFD has given birth to an impres-
sive number of methods4. Each has strengths of its own and depending on the
problem considered, a method will be more appropriate than another. There-
fore, why consider VPM and not another CFD method for the simulation of
liquid metal surface oscillations? To answer this question the following sections
review existing numerical methods, briefly explains their general principles and
details their strengths and weaknesses.

CFD methods can be classified in a number of ways: Eulerian versus La-
grangian methods, vorticity versus velocity-pressure formulations, etc. In the
next section, a brief overview of such general categories is given. Then, once
it will have appeared that a vorticity formulation in a Lagrangian frame-of-
reference is appropriate, a more detailed choice will be made in the following
section leading to VPM. Eventually, works introducing methods that share sim-
ilarities with ours will be stated as a reference, and that will allow to appreciate
the gap that the present work fills.

1.3 Lagrangian Vortex methods

1.3.1 Eulerian, Lagrangian and Eulerian-Lagr. methods

The most widespread classification of CFD methods is probably to sort them
as being part of the Eulerian, Lagrangian and Eulerian-Lagrangian families of
methods. Table 1.1 gives a summary of such classification applied to some CFD
methods.

4For curiosity, see appendix A.

6 Chapter 1. Introduction

Table 1.1: A classification of some CFD methods through the Eulerian/La-
grangian prism.

Eulerian
discretization

Eulerian-Lagrangian
discretization

Lagrangian
discretization

Eulerian
frame of ref

Classic finite
differences/volumes/etc. N/A N/A

Eulerian-
Lagrangian
frame of ref

N/A

Particle-laden flows,
Particle-based interface

capturing methods
(MAC, front tracking),

Arbitrary Lagrangian-Eul.

N/A

Lagrangian
frame of ref N/A Particle-mesh methods

(PIC, VPM) SPH

Purely Eulerian or Lagrangian methods

Most times, governing equations of flows are written in the Eulerian frame-of-
reference

∂q

∂t
+ (uuu · ∇)(q) = Rhs(q). (1.1)

In that case flow fields are represented by functions q of Eulerian coordinates
q(xxx, t) where xxx corresponds to a position in space and t is the time. It is
nevertheless possible to express those same fields by functions q̃ of Lagrangian
coordinates q̃(X, t) where X denotes a particle of fluid and t is the time

dq̃

dt
= Rhs(q̃). (1.2)

Note that the advection term vanishes, while the Right-Hand Side (RHS) op-
erator remains unaltered.

Since Eulerian governing equations are written in terms of Eulerian coor-
dinates, they are more naturally discretized in space by a static grid. On the
other hands, Lagrangian equations are more naturally discretized by a collec-
tion of particles that move along the flow. For some simple flows the particles
might preserve a fairly structured formation and behave as a “moving grid”.
However in most cases the particles are stirred by the flow and no regular
pattern emerges.

The main benefit of using a Lagrangian formulation of the Navier-Stokes
equations is that the advection term vanishes. Beyond removing the only non-
linear term of the equation, this implies that (i) the CFL constraint on the time
step is alleviated, and (ii) the dissipation and dispersion errors caused by its
numerical discretization vanish. Note however that using particles introduces
numerical errors as well, although it is weaker, mostly dissipation error but also
dispersion error (the latter being caused by the remeshing procedure that will
be introduced in chapter 2 as was shown by Marichal [20]). The main drawback
is that the irregularity of the particle arrangement can make the right-hand side
more difficult to compute. Additionally, the particles may empty some areas

1.3. Lagrangian Vortex methods 7

of the domain and/or cluster in other regions which can cause some numerical
issues (Lagrangian distortion, see Section 2.3.1). In other words, Lagrangian
methods tend to be more complex than Eulerian methods because they handle
a cloud of particles instead of a grid but can be advantageous by alleviating
the advective term.

Because of the simplicity of its discretizations, the Eulerian approach is
employed by most CFD methods. On the other hand, the Lagrangian approach
is very appropriate for the simulation of particles and hence has long been very
popular amongst plasma physicists [21] [22] or for the study of particles carried
away by a flow [23]. Nevertheless, since the early days5 of CFD, Lagrangian
methods also have proved themselves superior to Eulerian methods for the
simulation of certain continuums, in particular supersonic flows, where they
were very effective at capturing shock waves [24] [2]. Indeed Eulerian methods
tended to smear out shocks, whereas Lagrangian methods preserved them much
better.

CFD methods used in most commercial software (ANSYS Fluent, Star-
CCM+, etc.) rely mostly on finite volume methods for their simulations,
which is to say grid-based Eulerian solvers. On the other hand, a very well
known purely Lagrangian method is Smooth Particle Hydrodynamics6 (SPH).
It handles the unstructured behavior of the particles’ cloud by using quadrature
operators on the particles themselves.

Hybrid Eulerian-Lagrangian methods

Whereas the families of purely Eulerian and purely Lagrangian methods are
very specific, the class of Eulerian-Lagrangian methods is fairly broad and
covers a variety of methods using very different paradigms. As a general fact,
their motivation is to find a compromise between both Eulerian and Lagrangian
approaches and balance their respective strengths and weaknesses.

In particular one of the early motivations was to develop a method that
would capture shocks with little dissipation while preserving from Lagrangian
distortion. The most revealing example is probably the Arbitrary Lagrangian-
Eulerian (ALE) [2] method that allows to solve the governing equations any-
where on the Eulerian-to-Lagrangian spectrum for any points of time and space.
This allows to benefit from Lagrangian or near-Lagrangian equations where
useful, and at the same time prevent a too important grid distortion.

Also, the Lagrangian approach describes very naturally and efficiently the
motion of fluid interfaces. Examples include particle-based methods, such as
the MAC method [29] [30], or front tracking methods [31]. Both MAC and
Tryggavson’s methods use an Eulerian approach for the bulk of the solver,
therefore those methods can be thought as Eulerian methods with a Lagrangian
discretization of the interface. Note that for some flows, surface tension may
need to be computed from those particles [30].

5Von Neumann noticed the usefulness of particle methods for the simulation of shock flows
as early as 1944 [24]

6Nice review of SPH in [25], explanation in [26], user experience in [27], see also a brief
summary of its historical development in [28].

8 Chapter 1. Introduction

Some methods express the flow’s physics using a mix of Eulerian and La-
grangian governing equations. A typical example are the methods used for
particle-laden flows, which advect the particles/bubbles/droplets using a La-
grangian approach and resolve the Eulerian form of the Navier-Stokes equation
for the immersion fluid [23].

Eventually, some methods express the flow’s governing equations in the
Lagrangian frame-of-reference but perform parts of the computation on an
Eulerian grid: those are the particle-mesh methods and will be described in
more detail in a following section (see section 1.4.1). This allows to work with
a collection of particles in an arbitrary formation, while still being able to use
methods requiring more structured meshes. Examples include the Particle-in-
Cell method (PIC) [2] introduced by Harlow and Evans in 1957 [32] and the
Vortex Particle-Mesh method (VPM), also known as Vortex-in-Cell method
(VIC), proposed by Christiansen in 1973 [33].

1.3.2 Vortex methods and velocity-pressure formulation

Vortex methods can be advantageous on unbounded or “half-bounded” domains
where vorticity is compact. An example of that is the trailing vortices of aircraft
[34] (Fig. 1.5a). There, the wing acts as a source of vorticity, initially forming a
vortex tube. Outside of this tube, the vorticity decays quickly to zero whereas
velocity fields remain strong. Where velocity-pressure methods would need
special requirements for boundary conditions and/or a larger and hence more
expensive computational domain, vortex methods can tolerate an homogeneous
Dirichlet boundary condition enforced on the boundaries of a fairly compact
computational domain (see for example the jet simulation on Figure 1.5b).
For those reasons, vorticity has played a very important role in the study of
aircraft aerodynamics for a long time [35]. More generally vortex methods
are relevant to flows in unbounded domains [36], whereas they don’t have an
edge on velocity-pressure formulations for flow structures occupying a whole
(bounded) domain or for boundary layers7.

On the other hand, the major difficulty with vortex methods is the handling
of no-slip wall boundary conditions that cannot be expressed simply in terms
of vorticity. Solutions to this issue exist and will be described in the next
chapter (see section 2.4). However, they enforce the boundary condition in an
indirect way. Additionally, boundary layers present very thin flow structures
with high gradients in the normal direction to the wall. Simulation of such
flow is therefore best handled with anisotropic Eulerian meshes whose cells
are much larger in the tangential direction and finer in the normal direction.
Hence several research works [37] [38] have considered the coupling of velocity-
pressure solvers for the simulation of the hydrodynamics in the surrounding of
a bluff body, and thee of the trailing wake.

7Note that viscous diffusivity is the same for velocity or vorticity.

1.4. Vortex Particle-Mesh methods 9

(a) Vorticity field in the wake of an air-
craft [35]. Vorticity decays quickly to
zero which allows a smaller computa-
tional domain.

(b) Discretized particles of fluid in
a jet and its Kelvin-Helmholtz shear
layer [36]. No particles have been
seeded outside the jet.

Figure 1.5: Examples of flows where vortex methods exploit the compact sup-
port of the working variable more efficiently than velocity-pressure formula-
tions.

1.3.3 A first general choice: Lagrangian vortex methods

For the simulation of unbounded or “half-bounded” flows, vortex methods ap-
pear superior to other flow variable choices, while particle-based methods are
appropriate for highly advective flows. Hence it is relevant to use vortex meth-
ods expressing their governing equations in a Lagrangian frame-of-reference for
the study of the fluid interface dynamics of nuclear reactors, especially if the
computational domain does not cover the whole reactor vessel but only the
near-interface region.

1.4 Vortex Particle-Mesh methods

Now that the choice of a vortex methods expressed in the Lagrangian frame-of-
reference has been made, the exact method still needs to be selected. Indeed,
this class of methods is still broad.

1.4.1 Particle-particle and particle-mesh methods

Obtention of particles’ advection velocity from the vorticity field

For simplicity this subsection considers inviscid methods, which is to say ho-
mogeneous transport equations. Historically, the earliest Lagrangian methods

10 Chapter 1. Introduction

were so, such as Rosenhead’s method of point vortices [39] or Christiansen’s
Vortex-in-Cell [33]. The problem here is to convert the vorticity information
carried by the particles into a velocity information that can be used to ad-
vect them. Several solutions exist, some of them rely exclusively on particles
(particle-particle methods), others use a grid (particle-mesh methods).

In Rosenhead’s 1931 method of point vortices [39], each particle corresponds
to a pointwise vortex that induces advection velocities onto all the other par-
ticles following a Biot-Savart law of interaction8. The main drawback is that
the algorithm must consider for each particle the influence of all the other
particles, which yields a quadratic complexity O(N2) for the algorithm. The
original method was computed by hand9 and hence Rosenhead considered only
a few particles. However, since it was implemented on computer the number of
particles simulated increased dramatically and because of the polynomial com-
plexity of the algorithm, the cost of the computation quickly became limiting
[42].

The Fast Multipole Method introduced by Greengard and Rokhlin in 1987
[43] as an improvement to Barnes and Hut’s 1986 Multipole Method [44], lowers
the algorithm complexity to linear complexity O(N) (the original multipole
method had an O(Nlog(N)) complexity). It achieves so by grouping far-away
particles as one “meta-particle”. Closeby particles still need to be considered
one by one. Example of such work is Ploumhans Winckelmans et al.’s 2002
article [45]. For an overview of the method refer to Oxley’s PhD thesis [38], or
the Encyclopedy of Computational Mechanics [46].

Another solution suggested by Christiansen’s 1973 Vortex-in-Cell [33] is to
compute the velocity from vorticity on a grid by solving an elliptic problem
(Eq. 2.3). This requires to interpolate the quantities carried by the particles
onto the grid and back. Originally, the Cloud-in-Cell interpolant [47] was used,
although it has been replaced by higher order interpolants since then (see sec-
tion 2.3.3).

Evaluation of Navier-Stokes right-hand side terms

Whereas computing Right-Hand Side terms is straightforward on an Eulerian
domain, it is not so much the case when working with particles because of their
complex and time-changing cloud arrangement. As in the previous section, two
families of methods solve this problem: the particle-particle methods which
compute the effects of the RHS directly on the particles, and the particle-mesh
methods that perform the computation of the RHS on an Eulerian grid.

The particle-mesh method for the evaluation of Right-Hand Sides is the
continuity of the particle-mesh method to transform vorticity into velocity and
uses the same interpolants. With this approach, the RHS is computed through
traditional methods such as finite differences on the grid before being interpo-
lated to the particles, where it is time-integrated. This can be done by viscous

8In the case of a pointwise vortex, the induced velocity scales as one over distance to
vortex center.

9The method of point vortices was originally devised to simulate the Kelvin-Helmholtz
instability at a time when computers where not available. The earliest computer implemen-
tations of the method are from Birkhoff in 1959 [40] and Hama’s 1962 work [41].

1.4. Vortex Particle-Mesh methods 11

splitting which consists in isolating the RHS into a separate equation, as was
the original spirit of the Particle-in-Cell method [2]. In that case the advec-
tion of the particles is time-integrated separately from the viscous effects. As
a result, viscous effects cannot have an influence on the particles’ advection
within a time step. Therefore splitting comes with a lower convergence rate
[48] [49]. Fortunately better alternatives have since then been developed and
modern methods handle the viscous term in a coupled way [34] (Algo. 1), which
is to be preferred.

Particle Strength Exchange methods including Degond’s 1989 original scheme
[50] are a family of particle-particle method which implements viscous diffusion
through an integral operator that redistributes vorticity between particles in
such a way that vorticity is preserved. A generalization of PSE for any operator
is given by Eldredge et al. in 2002 [51]. For further information on the matter
see the section dedicated to it in Cottet’s 2000 book [52], the Encyclopedy
of Computational Mechanics [46], or Winckelmans’ and Leonard’s 1993 paper
[53].

A more radical approach is the weight differentiating approach embedded
in Smooth Particle Hydrodynamics (SPH) methods. In SPH each particle is
seen as a member of a statistical sampling of a flow variable. The field can be
interpolated anywhere by performing a Monte Carlo integration which takes
the form of a weighted sum. The laplacian (or other differential operators)
embedded in e.g. the viscous term of the momentum equation are directly
calculated on each particle as weighted sums as well [54] [55] [56].

Eventually some older methods have been tried but are no longer relevant
nowadays. One such example specific to vortex blob methods is the vortex
blob spreading [57] which consists in diffusing vortex blobs individually. It has
been proved to be inconsistent by Greengard in 1985 [58]. Another example is
the random vortex walk introduced by Chorin in 1973 [59], which consists in
advecting particles as random walkers to emulate diffusion. It is a converging
but not very efficient algorithm.

Particle-particle and particle-mesh methods

Usually if a particle-particle (resp. particle-mesh) method is used to obtain
particle advection velocity from their vorticity, then a particle-particle (resp.
particle-mesh) method will be used for evaluating the Right-Hand Side terms.
Nevertheless, in all generality one can classify methods according to whether
the computations are performed on a mesh (mesh-based methods), particles
(particle-particle methods) or if it involves an interpolation between both (particle-
mesh methods). Table 1.2 classifies some methods in those three categories. In
the case of particle-mesh and particle-particle methods, Table 1.3 summarizes
different methods for obtaining the particles’ advection velocity and to evaluate
the RHS term.

1.4.2 Classification by discretization

Vortex methods can be classified in the way vorticity is been discretized. Fig-
ures 1.6 and 1.7 illustrates each discretization type.

12 Chapter 1. Introduction

Table 1.2: Some CFD methods classified according to particle and/or mesh
discretization and the flow variables used.

Velocity-pressure methods Vortex methods

Mesh E.g. level set finite differences,
VOF finite volumes, etc.

Vorticity finite differences,
Vorticity Transport Model, etc.

Particle-Mesh Particle-in-Cell Vortex Particle-Mesh
Particle-particle Smooth Particle Hydrodynamics Method of point vortices

Table 1.3: Methods for evaluating particle advection velocity and the equation’s
source terms.

Family of methods Obtaining particle
advection velocity Evaluating RHS terms

Particle-Mesh Particle-mesh interpolation Viscous splitting,
Viscous coupling

Particle-particle Biot-Savart law of interaction,
Fast Multipole Methods

Particle Strength Exchange,
Weight differentiation,
Random vortex walk,
Vortex core spreading,

Finite differences methods

Vortex methods based on finite differences [60] [61] discretized the local form
of the governing equations over a grid of nodes. They are very simple to
implement and can exhibit high order of accuracy using the appropriate high
order schemes. Nevertheless they require either a regular mesh or a conformal
mapping to a regular mesh.

Finite volume methods

Finite volume methods discretize the domain in a collection of cells that may
have any size or shape (although that has an influence on quality of the re-
sults). The integral form of the conservation laws are written in each of these
cells. Hence the working variable is an (average) integral of the quantity (e.g.
momentum) held in the cell and fluxes are performed with neighbouring cells.
Such methods are very robust and conservative by construction, that is why
they are the method of choice for most commercial simulation software. How-
ever, it is difficult to achieve orders of convergence higher than two with finite
volume methods.

The vorticity variant of finite volumes is the Vorticity Transport Model
(VTM) and is surprisingly recent. Indeed it was introduced by Brown in 2000
[62] and extended to adaptive meshes by Brown and Line in 2005 [63]. It
was devised as a response to other Eulerian numerical methods used for the
simulation of helicopter wakes that tended to dissipate vorticity too quickly.
By using a conservative finite volume scheme, the VTM is able to simulate such
wakes without those drawbacks. It is a competitor of the VPM method as it

1.4. Vortex Particle-Mesh methods 13

has been and is used for the simulation of wakes, such as wind turbine wakes
[64] [65] or helicopter wakes [63].

Spectral methods

Spectral methods discretize the fields as a sum of basis functions. This method
is known to converge the fastest of all CFD methods when the solution is
smooth. However, it does not handle complex geometries well, and moreover it
has issues when some areas of the flow domain concentrate most of its features,
unlike finite difference or finite volume methods where the grid can be very fin
in some areas and much coarser elsewhere.

Those problems can be alleviated using a finite element formulation, such as
the Discontinuous Galerkin formulation [66] [67] or spectral element methods.
However, the drawback of those methods is the relatively high computational
cost and storage requirement.

Boundary-integral methods

Boundary-integral methods express the problems as an integral equation on the
domain boundary. They make use of Green’s functions to generate a solution
in the volume from boundary information. As such they can be extremely
computationally efficient for problems whose geometry has a small boundary
surface for a large domain volume. Also, they naturally handle unbounded
domains. However, they can only solve problem for which the Green’s function
is available.

Boundary-integral methods typically discretize the boundary as a succession
of panels, in which case they are known as boundary-element methods [68].
The latter were introduced by Hess and Smith in 1964 [69]. An examples of
vorticity-stream function solver is the 1999 work by Skerget et al. [70].

Method of point vortices

One of the earliest CFD vortex method was Rosenhead’s method of point vor-
tices proposed in 1931 [39]. It discretized vorticity as a collection of particles
carrying a single vorticity value. Christiansen’s original Vortex-in-Cell used
the same paradigm, although later VPM methods moved to a Lagrangian vol-
ume approach to benefit from smoother fields. Indeed point vortex methods
can generate non-regular solutions such as singular velocity fields. Some later
works also use this approach, as Schochet’s 1996 work for instance [71].

Vortex blob method

In the vortex blob method, each particle is associated to a vorticity blob which
has a Gaussian-like distribution with a given amplitude and spread. Note that
two blobs may superpose. The method was first introduced by Chorin in 1973
[59]. An accuracy and convergence assessment of the method is described in
Hald 1979 article [72] and the 1982 work by Nakamura et al. [73]. For a brief
overview of this method, refer to the Encyclopedy of Computational Mechanics
[46], or to Winckelmans’ and Leonard’s 1993 article [53].

14 Chapter 1. Introduction

(a) Point grid (b) Control volumes

Figure 1.6: Eulerian space-discretizations for vortex methods

(a) Pointwise (b) Vortex blob

(c) Lagrangian volumes (d) Contour dynamics

Figure 1.7: Lagrangian space-discretizations for vortex methods

Lagrangian volumes

In some Vortex Particle-Mesh methods as in a 1983 article by Cottet [49], the
domain is cut in smaller fluid volumes [49] [74] [34]. The volumes are advected
by the flow, which generates both a displacement of their center and a distortion
of their shape. Contrary to the vortex blob methods, volumes never overlap.
Using volumes allows for conservative methods to be used (see section 2.3.3).

Contour dynamics

The Contour Dynamics Model [75] (introduced by Deem and Zabusky in 1978
[76] [77]) discretizes the spectrum of vorticity values into a finite set of values.
The vorticity field is then approximated by a piecewise constant function with
each stage having one of the legal vorticity values. The domain is them decom-
posed in a different regions, one for each vorticity value. Marker particles are
placed at the interface between two neighbouring regions and advected follow-
ing a front tracking approach, where the advection velocity is determined form
the jump in vorticity at the interface. However, as for all front tracking ap-
proaches, topological changes in the vorticity “layers” are not handled naturally
by this method [78].

Vortex sheet, tube, ring methods

Some methods [79] [80] have been specifically designed to study one or few
vortex sheet(s), tube(s) or ring(s) and the related phenomena such as Crow
instability. Those works usually consider the theoretical study of those very

1.4. Vortex Particle-Mesh methods 15

specific flow structures. In that sense they follow the spirit of earlier works
[81] [82] on vortex structures. As a result, the numerical methods employed in
those works are not applicable to most flows. For instance, topological changes
of fluid interfaces, as it occurs during bubble entrainment phenomena, are not
handled naturally by vortex sheet methods.

In that family of method, the most popular appears to be the vortex-sheet
methods. For instance Rosenhead’s 1931 work considered a Kelvin-Helmholtz
instability [39] mixing two fluids of same mass density. Later, Meng studied a
rising bubble problem using a vortex sheet method in 1978 [83] and compared
a particle-particle method with a particle-mesh method. Also Baker studied
a Rayleigh-Taylor instability in 1980 [84] and free-surface flow in 1982 [85].
Finally, Tryggvason studied a Hele-Shaw fingering instability in 1983 [86] and
Rayleigh-Taylor instability in 1989 [87] between two fluids of different mass
density. Vortex sheets allow to study flows with arbitrary high Atwood numbers
with a quite sharp interface discretization. However, topology changes in the
bubble’s shape e.g. bubble splitting and/or merging is far from trivial.

1.4.3 Extensibility to 3D
The flows within nuclear reactors have 3D flow structures. Although this thesis
will only cover 2D flows, the methods investigated need to be easily extendable
to 3D flows, which is not the case of all vortex methods. This is due to the fact
that vorticity can be stretched in 3D, which does not occur in 2D. While some
numerical methods handle that effect with little modification, others require
more fundamental changes.

The original vortex blob method does not account for vortex stretching and
hence cannot be directly used in 3D. The first solution is to account for the
stretching by working with vortex filament segments as Chorin proposed in his
1980 Vortex Segment Method [80]. The height of the filament segments can
change in time to account for stretching [80]. Of course the vorticity equation
remains deprived of a vortex stretching term [80]. In that article the Vortex
Segment Method is used to simulate a boundary layer, which is a much more
complex flow than previously simulated with vortex filaments methods. It’s
convergence is proven by Greengard in 1986 [88].

However Beale and Majda proved in 1982 [89] that the original 2D vortex
blob methods with an additional stretching term in the vorticity equation [89]
is consistent and can be of arbitrarily-high order in 3D simulations. Compared
with Chorin’s Vortex Segment Method, the numerical implementation of this
method is much simpler. In Beale’s 1982 article [89] the stretching term was
computed on a Lagrangian grid, but it can also be computed by particle-particle
methods as did the same author in 1986 [90]. Particle-mesh methods can easily
support the vortex-stretching phenomenon by adding a stretching term in the
Right-Hand Side that is computed on the grid. The first 3D Vortex-in-Cell was
introduced by Couët in 1981 [42] and proceeded this way.

Those principles layed the basis for modern VPM simulations of three-
dimensional flows, which now has reached maturity. Cottet and Poncet pre-
sented in 2003 [91] a VPM method for the DNS of wall-bounded flows. The

16 Chapter 1. Introduction

previous year, Cottet et al. [92] compared the performance of a VPM method
against spectral methods for isotropic turbulence in a periodic box and achieved
satisfactory results. In particular it was established that although VPM meth-
ods were slightly inferior to spectral methods for very high wavenumbers and
twice expensive, especially close to the wall, the VPM method presented a very
good resolution of large and intermediate scales as well as a very low dissi-
pation of vorticity and it prevented the accumulation of energy in the tail of
the energy spectrum (contrary to the spectral method). A similar study has
been conducted by van Rees et al. in 2010 [93] but this time on the interaction
between two vortex tubes. It concluded that the VPM method achieved results
of similar accuracy than spectral method but at a lower cost.

Regarding fast implementations of the VPM method, Cocle et al. [94]
presented a Fast Multipole three-dimensional VPM method in 2007, Chatelain
et al. [34] proposed a heavily parallelized implementation of VPM in 2008,
and Kosior and Kudela [95] presented in 2012 an implementation of a three-
dimensional VPM method on GPUs. Eventually note the three-dimensional
simulation of the wake behind a bluff body by Ploumhans and Winckelmans in
2002 [45] which is an extension to 3D of their 2000 article [96].

1.4.4 Arguments in favor of the VPM method

The previous section has already determined that the method shall be a vor-
tex method with a Lagrangian frame-of-reference formulation of the governing
equations. Now that an overview of such CFD methods has been given, the
choice of VPM as a method of choice is justified in the present section.

Firstly the method must be able to handle generic flows, hence vortex
sheet/tube/ring methods, contour-dynamics or boundary-integral methods are
not applicable. The point vortices, vortex blob and Lagrangian volume meth-
ods are closely related to each other, yet the Lagrangian volume approach is
the most effective and modern approach thanks to the conservation properties
it offers. Eventually the spectral methods could be a candidate but will not be
considered in this thesis.

Also, due to the multiphase nature of the flow, additional terms will be
added in the governing equations. The selected method must hence be able to
handle those terms naturally. Only the Particle-mesh, Particle Strength Ex-
change and weight function differentiation (SPH) methods allow this. More-
over, the method must have solid convergence properties, which is not the case
of the Smooth Particle Hydrodynamics SPH method [97] [98] [99].

For those reasons the Vortex Particle-Mesh is a good candidate for the
target application.

1.5 Modern and/or relevant VPM methods

The VPM method has proved its effectiveness at simulating wakes [100] [101]
[34] [102]. Other uses exist such as simulation of animal locomotion [103],
geophysical flows [104] or computer rendering [105].

1.5. Modern and/or relevant VPM methods 17

However, little literature could be found for VPM and multiphase flows.
The only VPM work directly connected to our study that can be found is
from Shakouchi in 2014 [106] and concerns the VPM simulation of a fluid
interface separating water and brine that is put in motion and mixed by a jet
coming from downwards. The flow studied has a fluid interface and a jump
in the fluid properties across it, similarly to the flow problems that are to be
instigated in this thesis. However, the mass density of both fluids is fairly
similar although not explicitly indicated, and there is no surface tension which
makes the problem considered different from ours. Eventually, the Boussinesq
approximation is used, leading to a viscous term with constant kinematic and
dynamic viscosity, whereas the fluid properties in our case are changing.

It is in fact more usual to see the velocity-pressure formulation used for
interfaces. Hence additionally to all the finite differences [107] or finite volumes
[108] simulations of multiphase flows (amongst other methods), several SPH
simulations of such flows have been performed as well, at least since 2003 [109].
Nevertheless, equivalent works with VPM are extremely scarce.

Most vortex methods for interfaces seem to consider the interface as a vortex
sheet, sometimes with Vortex-in-Cell elements in them [110] [87] [83], instead
of considering the vorticity in the volume as we aim at doing. We also note
the 1997 free-surface one-fluid method by Lundgren and Koumoutsakos [111],
yet although there are some similarities, our two-phase approach remains quite
different.

More unusual is Fromm’s 1984 work [112] which is a variant of the Marker-
in-Cell method to simulate an inkjet printer ejecting a drop. The problem is
expressed in terms of both velocity and vorticity, each of those two variables
having a parabolic equation of their own that is time-integrated. Surface ten-
sion is implemented through the momentum equation on velocity. On the other
hand, and since the viscosity and mass density of the fluid are considered con-
stant, the vorticity equation is oblivious of the presence of the interface, and
remains an advection-diffusion equation despite the presence of two phases.

Some work has been performed on Vortex Particle-Mesh methods for weakly
variable mass density single flows, based on Anderson’s 1985 method [113].
In his 2002 article with Winckelmans [114] (see also his thesis [115]) Thirifay
presents a combustion solver with mass density ratio of two and in [103] Gazzola
presents a fluid-structure interaction solver with mass density differences of
1.01.

Let us remind also the 2005 article by Hieber and Koumoutsakos [18] that
demonstrated the usefulness of particle-mesh methods for capturing (“track-
ing”) fluid interfaces. Also, immersed interface methods for Vortex Particle-
Mesh solvers have been published since 2002 [116] [117] [118] [20] [119]. Those
immersed interface methods seem to have only been used for the flow around
solid objects, not two-phase flows. Note also a VPM method for particle-laden
flows by Uchiyama in 2015 [120].

More generally, in terms of fairly recent evolutions or works on VPM meth-
ods, one can note a 3D DNS VPM simulation in a wall-bounded domain con-
ducted by Poncet in 2003 [91], VPM simulations for immersed bodies [96],

18 Chapter 1. Introduction

staggered VPM proposed by Uchiyama and al. in 2013 [121] (Fig. 1.8) and
VPM for compressible flows from 2002 [122] [123] [38].

(a) Collocated mesh for vortex meth-
ods.
All fields are stored in the same place.

(b) Staggered mesh for vortex meth-
ods.
Cell corners are used to store vortic-
ity, edges for velocity and centers for
velocity potential.

Figure 1.8: Staggered method proposed by Uchiyama [121]

1.6 Research questions

The present work attempts to assess the potential of the VPM method as
compared to traditional Eulerian velocity-pressure solvers for the simulation of
multiphase flows with large fluid properties differences, both in terms of accu-
racy and computational performance. Given the existing litterature presented
in the previous sections, several research questions arise:

• It has been shown in 2005 by Hieber and Koumoutsakos [18] that a La-
grangian implementation of the level set method is superior to the original
Eulerian implementation. Can similar advantages be achieved by using a
Lagrangian implementation of a full-fledged flow solver?

• More generally, how do multiphase VPM methods perform in respect to
traditional Eulerian velocity-pressure methods, both in terms of accuracy
and computational efficiency?

• Only one work has been found that performs a multiphase VPM simu-
lation, namely the 2014 paper by Shakouchi [106]. As noted previously,
this work employed the Boussinesq approximation and did not consider
surface tension. How and how well can VPM methods handle multi-
phase flow features, in particular surface tension and variations of fluid
properties?

• Numerical simulations of flows with high mass density ratio is notoriously
difficult, including with the most widespread methods. Also, no previous
work has been found that simulated such flows using the VPM method.
How easily can VPM method handle large mass density ratios?

1.6. Research questions 19

The next chapter introduces the underlying principles of a single-phase Vor-
tex Particle-Mesh method which will serve as a starting point. Each following
chapters will then add upon this base until the full-featured solver that can
perform simulations of the target study case is obtained: firstly a method to
capture the interface location will be developed, then the methods used to dis-
cretize the terms of the equation dependent on the multiphase nature of the
flow are presented, thirdly a method for handling large mass density differences
between phases is described. Eventually, the solver will be validated on bench-
marks and some simulations will be performed in cases similar to what could
be encountered in the nuclear industry.

20 Chapter 1. Introduction

Chapter 2

Single-fluid VPM method

In this chapter a simple “advection-diffusion” Vortex Particle-Mesh solver is
presented. It will serve as a basis for the later work of this thesis as more
functionalities are being added in the following chapters, until the full solver
capable of simulating our problem is obtained. The solver considered in this
chapter is applicable for constant fluid properties 2D flows in closed (bounded)
domains and can take into account merely advection, viscous diffusion and weak
buoyancy phenomena. First free-slip boundary conditions are considered, then
no-slip boundary conditions will be enforced.

2.1 Governing equations

The classical Navier-Stokes equation is written as

∂uuu

∂t
+ (uuu · ∇)uuu = − ∇p

ρ
+

1

ρ
∇·τττ + ggg (2.1)

in an Eulerian frame of reference, where uuu is the velocity, p the static pressure,
µ the dynamic viscosity and ρ the mass density. For the time being, potential
simplifications based on the incompressible nature of the flow or constant fluid
properties are not considered for the sake of preserving generality. Taking the
curl of the previous equation yields the equation for vorticity ωωω

∂ωωω

∂t
+ (uuu · ∇)(ω) = − ∇p

ρ
× ∇ρ

ρ
+ ∇×

(
1

ρ
∇·τττ

)
(2.2)

Note that since we work on 2D problems, vorticity has only one non-zero
component ωωω = (0, 0, ω) and simulation can be performed with this scalar quan-
tity directly. In order to time integrate the vorticity, velocity uuu and pressure p
must be known.

In a closed domain, velocity is obtained from vorticity by solving (see ap-

21

22 Chapter 2. Single-fluid VPM method

pendix F.1.1)

Find stream function ψ such that:

{
∇2ψ = −ω on Ω

ψ = 0 on ∂Ω
, (2.3a)

Get velocity uuu from stream function ψ: uuu = ∇×ψ ê̂êez. (2.3b)

On the other hand pressure is obtained through the momentum equation
(Eq. 2.1), which yields

∂ωωω

∂t
+ (uuu · ∇)ωωω =

(
Duuu

Dt
− ggg
)
× ∇ρ

ρ
+

1

ρ
∇× (∇·τττ) (2.4)

Notice that the viscous terms of both the velocity (Eq. 2.1) and original vorticity
(Eq. 2.2) equations are merged into a single term.

In this chapter, the continuity and energy equations will not be considered.

2.2 Some important conventions and definitions
Because of the VPMmethod mixing Lagrangian and Eulerian space-discretizations,
clear definitions must be given regarding frames of references and systems of
coordinates.

2.2.1 Systems of coordinates

Lagrangian particles are marker points that are advected by the flow. They
are characterized by their original location X at the initial condition and the
lapse of time t− tini during which they have been carried around by the flow.
At any instant of time t the location of any particle X is given by the particle
position function χ(X, t). In particular we have

X = χ(X, 0). (2.5)

The Vortex Particle-Mesh method solves the governing equations in their
Lagrangian form. However those equations are discretized both on an Eulerian
grid and on Lagrangian particles. Eulerian coordinates (xxx, t) are used when
working on the grid, while Lagrangian coordinates (X, t) are used when working
with particles.

(xxx, t) = (χ(X, t), t) (2.6a)

(X, t) = (χ−1(xxx, t), t) (2.6b)

Moreover, since there will often be transformations between Eulerian and
Lagrangian coordinates, it is critical to differentiate the functions q taking
Eulerian coordinates as input q(xxx, t), to the functions q̃ taking Lagrangian
coordinates as input q̃(X, t). Both functions are connected by the particle
position function χ(·)

q(χ(X, t), t) = q̃(X, t) (2.7)

2.2. Some important conventions and definitions 23

Eventually note that in the same way that Eulerian equations are typically
written analytically on a continuous space before being discretized using the
Method of Lines, the same can be done of the Lagrangian form of the equation.
Hence before discretization there is an infinite number of “particles”, a given
particle Xp being merely one of them, in the same way as there are an infinite
number of points in the flow domain Ω before grid discretization reduces it to
a finite set of nodes xxxi,j .

2.2.2 Frames of reference

An important property that will be used in the rest of the thesis is that a
transport equation expressed in the Eulerian frame of reference

∂q

∂t
+ (uuu · ∇)(q) = Rhs(q) (2.8)

sees its advective term vanish when expressed in the Lagrangian frame of ref-
erence

dq̃

dt
= Rhs(q̃) (2.9)

while the Right-Hand-Side operator Rhs(·) remains unaltered. In particular,
consider the level set advection equation (Eq. 3.6) : once expressed in the La-
grangian frame of reference, it becomes

∂φ̃

∂t
= 0 (2.10)

In other words : the Lagrangian level set function φ̃ is constant. This is the
cornerstone of any Lagrangian method, including the VPM: by removing the
advective term, the numerical errors it generated as well as the CFL constraint
on time step it imposed both vanish. In the case of highly-advective flows, the
most stringent stability constraint is typically the CFL constraint. Hence by
simulating such flows with a Lagrangian method, one can choose larger time
steps values than with a purely Eulerian method.

2.2.3 Discretization of space

Eulerian space-discretized methods use a grid Ωhhh that is a collection of nodes
xxxi,j . On the other hand a Lagrangian space-discretized method works with a
finite number of individual particles indexed p ∈ [0, |Ωhhh|[whose position XXXp is
updated in time by time-integrating the Lagrangian velocity ũuu since

dXXXp

dt
= ũuup (2.11)

24 Chapter 2. Single-fluid VPM method

2.3 Numerical method

2.3.1 Discretization of space
Lagrangian volumes

The VPM method cuts the domain into “Lagrangian volumes” of fluid Vp.
Initially, they correspond to square-shaped volumes of equal size, centered in
each grid node xxxi,j , and of side length equal to a grid spacing hx. As time goes,
the Vp volumes are advected by the flow and see their shape being distorted,
although their volume remain constant in solenoïdal flow fields (Fig. 2.1). At
all times the union of all Vp volumes hence correspond to the domain Ω (to
within a null set) and they never overlap each other.

More formally, a Lagrangian volume centered around particle Xc is defined
as the collection of particles initially located within a square that is centered
in Xc, and has a radius half a grid spacing hx/2.

Vp(Xc, t) :=

{
χ(X, t) : ‖X −Xc‖∞ <

hx
2

}
(2.12)

(a) t = 0 (b) t = δt (c) t = 2 δt

Figure 2.1: Advection of 16 Lagrangian volumes in the analytical case.

Numerically however, the volumes’ shape is not stored, only their center is.
In order to achieve a simple graphical view of the Lagrangian distortion this
causes, it will be assumed that the volumes remain square-shaped (Fig. 2.2).
After a certain number of time steps however, this assumption is no longer
reasonable. In particular, volumes overlap in parts of the domain while other
regions remain uncovered (Fig. 2.2c). Additionally, particles might have scat-
tered from certain regions of the domain, while other might be clustering else-
where (Fig. 2.3b). It then becomes necessary to “remesh” the particles, that is
to put them back into their original upright square lattice formation. This is
done by (i) interpolating the particles’ carriage to the grid, (ii) re-positioning
the particles into an upright square lattice and (iii) interpolating the quantities
from the grid back onto the particles.

Eventually, let us stress out that although the rest of this document will
hold more occurrences of the word “particle” than “Lagrangian volume”, the
atomic discretization element of the VPM method is indeed a volume, not a

2.3. Numerical method 25

(a) t = 0 (b) t = δt (c) t = 2 δt

Figure 2.2: Advection of 16 Lagrangian volumes in the discretized case.

particle. However, since the only information of a Lagrangian volume that is
stored and managed by the computer is its center, it is numerically handled as
a particle.

Lagrangian distortion

The longer in time the particles are advected, the more distorted the particle
lattice will be. Therefore, there is a maximum time step value beyond which
a single time step would lead to a particle lattice that is too distorted. Note
however that this critical time step value is typically much greater than the
time step limit imposed by a CFL constraint. That distortion is caused by two
effects : (i) the particles are “slinged away” by the rotative motion of the flow
which tends to pull them away from centers of rotation (Fig. 2.3a), and (ii) the
shear and compressive1 motions of the flow alters the shape of the Vp volumes
(Fig. 2.1c) (Fig. 2.2c).

(a) Particle slinging (b) Particle clustering

Figure 2.3: Particle slinging and its main consequence: particle clustering. On
the left subfigure, due to a circular motion of the flow around rotation center
(), particle () should follow trajectory () and hence move to ().
However, over an (Euler Explicit) time step the local velocity () brings it
to () instead.

1Since we work on an incompressible flow, only numerical errors may compress the flow.

26 Chapter 2. Single-fluid VPM method

The magnitude of the first phenomenon is measured by the Lagrangian CFL
(LCFL) on rotation

LCFLrot := max
xxxi,j∈Ωhhh

(
|ωi,j ht|

)
(2.13)

while the second type of distortion is measured by the LCFL on shear

LCFLshear := max
xxxi,j∈Ωhhh

(
‖SSS(xxxi,j)‖ht

)
(2.14)

where SSS is the strain tensor and ht is the time step value. The LCFLshear is
calculated using the `1 norm2. Eventually, for ease of use we define the “global”
Lagrangian CFL as

LCFL := max (LCFLrot, LCFLshear) (2.15)

Note that both LCFLrot and LCFLshear are measures for the rate at which
distortions are made, and do not indicate directly how distorted the flow is.
Note also that the amplitude of the error on particle motion (“particle-slinging”)
depends a lot on the time integrator used. It is particularly strong (Fig. 2.3a)
for the Euler Explicit scheme, and hence other time integration schemes are
prefered instead such as the Runge-Kutta 2 midpoint scheme (see appendix
D.2) or the low storage Runge-Kutta 3 scheme described in Appendix D.4.

2.3.2 General algorithm of the VPM method
Unlike a grid, particles are not necessarily disposed in an upright square lattice.
Hence in particle methods, finite differences cannot be used directly to evaluate
the Right-Hand-Side (RHS). Several methods exist to alleviate this issue, the
VPM method being merely one of them. The spirit behind it is to interpolate
particle data on the grid so that the right hand side can be evaluated.

The corresponding algorithm for an Euler Explicit time integrator is given
in Algorithm 1. As can be seen, the vorticity information is firstly interpolated
from particles to grid (Algo. 1-1) using the P2M (“Particle-to-Mesh”) subrou-
tine. Secondly, calculations are performed on the grid so as to obtain velocity uuu
(Algo. 1-2) and the time derivative of vorticity ∂ω

∂t (Algo. 1-3) on the grid. Then,
both fields are interpolated back to the particles (Algo. 1-4) (using the “Mesh-
to-Particles” M2P sub-routine) where the integration is performed (Algo. 1-5).

The following section explains in greater details how the interpolation works.

2.3.3 Interpolating between particles and grid
Interpolation between particles and mesh is one of the core elements of a VPM
method. Firstly, the interpolation from mesh to particle is presented, then the
reverse interpolation is described. Eventually, more details are given on the
interpolating kernels.

2Ideally the `2 norm should be used, however it is difficult to compute. On the other
hand, the `1 norm is much easier to evaluate and is always greater than it: in other words it
safely over-estimates the distortion.

2.3. Numerical method 27

Algorithm 1: General VPM algorithm (Euler Explicit time integration)

1 Interpolate from particles to grid
ω ← P2M

(
XXXnp,ω

n
p

)

2 Compute velocity from vorticity
Find ψ such that : ∇2ψ = −ω
uuu ←∇∇∇× (ψ ê̂êez)

3 Compute RHS on grid
Dω
Dt
← Rhs (ω,uuu, t)

4 Interpolate from grid to particles{ Dω
Dt

∣∣
p

uuup

}
← M2P

(
XXXp,

{
Dω
Dt
uuu

})

5 Integrate particles’ position and vorticity on the particles{
ωn+1
p

XXXn+1
p

}
←
{
ωn
p

XXXnp

}
+ ht

{ Dω
Dt

∣∣
p

uuup

}

Interpolation from mesh to particles

In order to interpolate quantity q from the grid Ωhhh to a particle p, an interpo-
lation scheme is used

α[q̃](XXXp) =
∑

xxxi,j∈Ωhhh

α[q](xxxi,j) Wh(xxxi,j −XXXp) (2.16)

where Wh is an interpolation kernel of moment 1 at least, and the intensity
α[q] of field q is defined as the integral over the Lagrangian volume

α[q](XXXp, t) :=

ˆ
Vp(XXXp,t)

q dx (2.17)

The reason why this scheme interpolates an integral of vorticity instead
of pointwise vorticity, is that we want the vorticity to be conserved through
interpolation. Indeed, since the interpolation kernel has a moment greater or
equal to one, the integral of vorticity remains unchanged through interpolation
and hence vorticity is conserved.

Interpolation from particles to mesh

The procedure is a little more delicate when interpolating from particles to grid
since interpolation schemes such as the M’4 scheme require their inputs to be
expressed at regularly spaced points, which is not the case of the particles in
the general case. Instead, each particle is considered one by one, and for each
of them a square lattice of particles carrying value zero is created. Since the
nodes in that lattice are regularly spaced, the interpolation scheme can now be
used. Practically speaking, for each individual particle p, the value it carries is

28 Chapter 2. Single-fluid VPM method

interpolated individually to each node xxxi,j of the grid Ωhhh

(αp)i,j = α̃p Wh(XXXp − xxxi,j). (2.18)

where αp(·) is the interpolated field generated by a single particle p (and its
cloud of null particles). Hence, the (total) interpolated field α(·) is the sum of
the individual interpolations of each particle XXXp within the cloud of particles
Ω̃h

αi,j =
∑

XXXp∈Ω̃h

(αp)i,j =
∑

XXXp∈Ω̃h

α̃p Wh(XXXp − xxxi,j) (2.19)

Interpolation kernels

The interpolation kernel is chosen to be the product of two one-dimensional
kernels

Wh(xxx) := w

(|xxx · ê̂êex|
hx

)
w

(|xxx · ê̂êey|
hy

)
(2.20)

where hx = hy are the grid’s spacing, and w(·) is the weighting function.
Several criteria guide the choice of a kernel, mainly: moment order, conti-

nuity of the nth first derivatives, order of accuracy of the interpolation error
and strength of numerical diffusion. In one dimension, a kernel Wh of moment
k is a kernel such that

+∞∑

i=−∞
Wh(x+ i h) = 1 , ∀x ∈ [0, h[(2.21)

and
+∞∑

i=−∞
(x+ i h)nWh(x+ i h) = 0 , ∀x ∈ [0, h[(2.22)

for all n ∈ [1, k − 1].
One of the simplest choices for a kernel would be a witch-hat function.

Historically, that was what the Cloud-in-Cell (CIC) method consisted in [47].
The hat (piecewise constant) interpolant has also been used under the name
of Nearest Grid Point (NGP) interpolant [124]. However such kernel yields
interpolated fields that are not smooth enough, even when interpolating from
a smooth field. This causes issues when finite differences are computed on the
outputted interpolated field. Ideally we pursue a kernel of class C1 at least.

On the other hand, amongst all possible functions, polynomials are very
attractive thanks to their lower computational cost. Hence B-Splines are a
natural choice [125]. In particular the cubic spline kernel has an order of
accuracy of two, a moment of two and is C2. It is defined as

w(ζ) =

1
6 (4− 6 ζ2 + 3 ζ3) , if 0 ≤ ζ < 1
1
6 (2− ζ)3 , if 1 ≤ ζ < 2

0 , if 2 < ζ

(2.23)

Moreover, in his 1985 work, Monaghan [126] has performed a Richardson
extrapolation on those B-Splines in order to improve the order of accuracy of

2.3. Numerical method 29

the interpolation by one at the cost of the order of the interpolation function
class being lowered by one. This leads in particular to the widely used M’4
kernel that is a good compromise between previously indicated criteria: it is of
class C1, third order of accuracy and moment of order three. It is defined as

w(ζ) =

1− 5
2 ζ

2 + 3
2 ζ

3 , if 0 ≤ ζ < 1
1
2 (2− ζ)

2
(1− ζ) , if 1 ≤ ζ < 2

0 , if 2 < ζ

(2.24)

In the solver of the current chapter and in the rest of the thesis, the M’4
kernel will be used unless indicated otherwise. The profiles of each of the four
weighting function discussed in the present section are shown in Figure 2.4,
and some of their general properties are shown in Table 2.1.

−2 −1 0 1 2

0

1

(a) Witchhat (M2)

−2 −1 0 1 2

0

1

(b) Quadratic spline (M3)

−2 −1 0 1 2

0

1

(c) Cubic spline (M4)

−2 −1 0 1 2

0

1

(d) Richardson extrapolated cubic
spline (M’4)

Figure 2.4: Some interpolation kernels

Table 2.1: Some examples of interpolation kernels

Order of
convergence3

Differentiability
class Moment Positive

Witchhat (M2) 0 0 2 Yes
Quadratic Spline (M3) 1 1 3 Yes
Cubic Spline (M4) 2 2 4 Yes
Richardson-extrapolated M4 (M ′4) 3 3 3 No

3Note that second-order central differences will be used, hence the global accuracy of the
method is limited to second-order.

30 Chapter 2. Single-fluid VPM method

(a) Free-slip vorticity
ωslip.

(b) Correcting vorticity
ωcorr.

(c) No-slip vorticity ω.

Figure 2.5: Correction of the free-slip vorticity field to obtain a no-slip vorticity
field. The wall is visible on the left of the picture (), as well as the velocity
profile () and the vorticity field () .

2.4 Enforcing boundary conditions

2.4.1 Free-slip boundary conditions
Free-slip boundary conditions are characterized by a velocity field of normal
component un and tangential component ut observing no through flow

un = 0 on ∂Ω (2.25)

and no shear at the boundary

∇ut · n̂̂n̂n = 0 on ∂Ω (2.26)

Such boundary condition is naturally imposed in vortex methods by enforcing
(e.g. homogeneous) Dirichlet boundary conditions on the stream-function ψ
(Eq. 2.3a)

ψ = 0 on ∂Ω, (2.27)

which yields no through flow, and homogeneous Dirichlet boundary conditions
on the vorticity

ω = 0 on ∂Ω, (2.28)

which yields no shear flow.

2.4.2 No-slip boundary conditions
On the other hand, no-slip boundary conditions are characterized by a velocity
field observing no through flow

un = 0 on ∂Ω (2.29)

and zero tangential velocity at the wall

ut = 0 on ∂Ω. (2.30)

However, there is no simple way to express this constraint in terms of vorticity.
A solution presented in Koumoutsakos et al’s 1994 article [127] or Pépin’s 1990

2.4. Enforcing boundary conditions 31

PhD thesis [128], amongst others, consists in first integrating a time step using
a free-slip formulation, then correcting the resulting vorticity field knowing
the wall slip velocity (Algo. 2). In other words, the no-slip vorticity field ω is
decomposed into a free-slip vorticity field ωslip and a correcting vorticity field
ωcorr

ω = ωslip + ωcorr. (2.31)

This is illustrated by Figure 2.5 and Algorithm 2: firstly the free-slip problem
is solved over a time-step (Algo. 2-1), which yields the slip vorticity field ωslip.
The velocity field uuuslip corresponding to this vorticity field (Algo. 2-2) is non-
zero at the wall (Fig. 2.5a). In order to cancel out the latter, the correcting
vorticity field ωcorr must correspond to a vortex sheet dΩ of intensity dγ such
that it generates a wall-slip velocity of equal amplitude but opposite direction
(Fig. 2.5b) (Algo. 2-3). By summing both fields one obtains a no-slip vorticity
field ω, whose corresponding velocity field in indeed equal to zero at the wall
(Fig. 2.5c) (Algo. 2-4).

Algorithm 2: Enforcing no-slip boundary conditions in vorticity

1 Time-integrate the free-slip problem over one time-step
ωn

slip ← ωn

ωn+1
slip ← ωn

slip +

ˆ tn+1

tn

∂ωslip

∂t
dt

2 Obtain wall slip velocity uuuslip from free-slip vorticity ωslip

uuun+1
slip ← ω2uω2uω2u(ωn+1

slip)

3 Compute correcting vorticity ωcorr from slip velocity uuuslip by solving
problem 2.32
Find ωn+1

corr such that ω2uω2uω2u(ωn+1
corr) = −uuun+1

slip on ∂Ω

4 Apply correction to slip vorticity ωslip to obtain no-slip vorticity ω
ωn+1 ← ωn+1

slip +ωn+1
corr

Mathematical problem for correction vorticity

Unlike the problem for free-slip vorticity, the problem for correction vorticity
requires shear at the wall. More specifically, since the flow is motionless at the
wall, the velocity on both sides of the vortex sheet must be of same amplitude.
Knowing the intensity of the vortex sheet, the problem for correction vorticity
describes its viscous diffusion on the domain Ω over the timespan of the time
step.

Assuming that the diffusive flux of vorticity across the boundary caused by
wall friction is constant in time within each time step, the correcting vorticity

32 Chapter 2. Single-fluid VPM method

Figure 2.6: On each boundary element, the free-slip velocity field () must
be cancelled by a vortex sheet (). The velocity () induced by the
vortex sheet must be of same amplitude but opposite direction compared to
the wall-slip velocity ().

ωncorr can be taken as the solution of the problem

∂ωcorr
∂t

= ν∇2ωcorr on Ω (2.32a)

ωcorr = 0 at t = 0 (2.32b)

∇ωcorr · n̂̂n̂n = −
unslip,t
ν ht

on ∂Ω (2.32c)

at time t = ht.
Numerically, the problem 2.32 is solved using the method suggested by

Ploumhans and Winckelmans in [96] which is based on a boundary-element
method. The domain boundary is discretized as a collection of panels (boundary-
elements) of length hx such that each edge of a grid cell overlapping the domain
boundary is a panel. Each panel is then considered to be a vortex sheet of in-
tensity −2uuuslip · t̂̂t̂t hx, where t̂̂t̂t is the tangent vector to the wall (Fig. 2.6). The
slip-velocity (and hence the vorticity diffusive flux ∇ω· n̂̂n̂n) is assumed constant
in space along it. According to Ploumhans and Winckelmans [96], the correct-
ing vorticity field generated by a single panel of the bottom wall centered in
zero is

ωcorr = −uslip,t
√
ν

2h2
x ht

ˆ ht

0

(
√
t
[
erfc(s)

]s=g(y+hx
2 ,t)

s=g(y−hx2 ,t)

([
ierfc(s)

]s=g(hx,t)
0

−
[
ierfc(s)

]0
s=g(−hx,t)

))
dt

(2.33)
where function g(·, ·) is defined as

g(x, t) =
x√
4νt

(2.34)

Eventually the contributions of every panel is summed up to obtain the
correcting vorticity field ωcorr.

2.5. Summary 33

2.5 Summary
A traditional VPM numerical method has been presented which can be used
for the simulation of monophasic flows with free-slip or no-slip boundary con-
ditions. The next chapters will add features to that solver, starting in the
following chapter with the ability to capture the fluid interface’s position.

34 Chapter 2. Single-fluid VPM method

Chapter 3

Interface capturing VPM
method

We now consider a two-phase flows where the flow domain Ω is split into an
interior region Ω− holding one fluid phase and an exterior region Ω+ containing
the other. Both regions are separated by a fluid interface Γ (Fig. 3.1a).

The Navier-Stokes equations embed fluid properties such as mass density
or dynamic viscosity. For instance, a typical momentum equation is written as

∂uuu

∂t
+ (uuu · ∇)uuu =

1

ρ
∇· (2µSSS) (3.1)

In a two-phase flow, the properties of both fluids are often different. Hence,
one must know in which fluid one is located so as to select the proper fluid
properties. Additionally, if the flow is subject to capillary action, the surface
tension force will act only on the interface and its strength is proportional to
the local curvature of the interface. Therefore computing the surface tension
term requires to know where the interface is located and its shape. Several
numerical methods allow to update and retrieve such information about a fluid
interface.

Before tackling jumps in fluid properties across the fluid interface, the solver
must be able to handle two phases of identical properties. This is the topic
covered by the present chapter. First an overview of existing interface captur-
ing/tracking methods is given, and the choice of the level set method is justified
in regards to the requirements of the flows to be simulated. Then the algorithm
of the VPM method is modified to accommodate this method.

3.1 Selecting an interface capturing method
Multiphase CFD is anterior to electronic computers [39]. Yet with the advent
of electronic computers and the subsequent strong interest in CFD, several
radically different interface tracking/capturing paradigms have been devised
up until the nineties. From there on no new approach has emerged, yet former
methods were consolidated and hybrids of existing methods were developed.

35

36 Chapter 3. Interface capturing VPM method

(a) Reference case (b) Front tracking (c) Particles

(d) Level set (e) Volume-Of-Fluid

Figure 3.1: The interface as perceived by the computer

In this chapter we describe the different families of interface capturing/-
tracking methods as well as the more recent developments on the matter. Fig-
ure 3.1 gives a graphical overview of the families of methods considered. Then
the pros and cons of each method is given. Eventually one of those methods is
chosen for our solver and that choice is motivated by the features of the flows
that are to be simulated.

3.1.1 Front tracking

The most naive approach consists in seeding marker particles at the interface
location (Fig. 3.1b). Those marker particles are advected with the flow to keep
the interface location information up-to-date through time. This is referred to
as front tracking. The earliest use of such a method is Rosenhead’s 1931 work
[39]. Unverdi and Tryggvason also use that approach in his 1992 article [31].

However, it has a major disadvantage : handling topological changes such
as splitting or merging of bubbles is far from easy. As an example, Figure 3.2
shows two bubbles that come closer to each other and merge. Originally, marker
particles are placed around both bubbles (Fig. 3.2a). Then the bubbles happen
to be pushed towards one another by the flow until they overlap (Fig. 3.2b).
This of course is not physical: both bubbles should merge to become a single
bubble (Fig. 3.2d). To achieve this result, the computer must be capable of
detecting the overlap, delete the unnecessary marker particles and add particles
at the junction between bubbles (Fig. 3.2c). Hence the merging of two bubbles
even-though it appears to be a very natural phenomenon, is in fact difficult
to program on a computer, although feasible. More generally the difficulty
for front tracking methods to handle topological changes has motivated the

3.1. Selecting an interface capturing method 37

(a) Initial condition: two distinct bub-
bles

(b) The flow happens to push both
bubbles towards each other until they
overlap.

(c) The program detects the overlap
and deletes the nodes () that are
no longer required. . .

(d) . . . then adds nodes () at the in-
tersection points.

Figure 3.2: The main challenge of the front tracking method is to handle topo-
logical changes. Note that steps (c) and (d) involve connectivity information
(i.e. knowing which are the neighbours of any node), which is not always
straightforward in 2D, and much more difficult in 3D.

development of alternative methods that can handle topological changes more
naturally. All those other methods handle the interface in a more indirect
way and are therefore described as interface capturing methods as opposed to
the interface tracking method. On the other hand, front tracking methods are
known to advect the fluid interface very accurately and are still being used as
of today for that reason.

3.1.2 Particle methods

Particle methods (Fig. 3.1c) attempt at addressing the shortcomings of the front
tracking method, while reusing the concept of particles advected by the flow.
Unlike the front tracking method, particles are seeded within one or both fluid
phases instead of being placed on the interface itself. In the same way as front
tracking, those particles are advected with the flow using the local velocity
field.

The advantage of particle methods in comparison to the front tracking ap-
proach is that connectivity information (which particles are the neighbours of
each particle) is not required, and hence topological changes are handled more
naturally.

Historically, particle methods are one of the earliest methods used to capture
a fluid interface with Harlow’s 1957 Particle-in-Cell (PIC) method [32] (first
unpublished work in 1955 [129]). However, it appears to have lost most of
its popularity and is no longer very much used except for Smooth Particle
Hydrodynamics (SPH) simulations [130].

38 Chapter 3. Interface capturing VPM method

3.1.3 Level set

The level set method (Fig. 3.1d) introduced by Osher and Sethian in 1988 [131]
uses a radically different paradigm. Indeed it defines a so-called level set field
that indicates for any given point xxx both its distance to the interface Γ and
within which phase it is located.

The advantage of the level set method is that it allows to compute very easily
geometric information of the interface. For instance, the normal is equal to the
gradient of the level set field and the curvature is its laplacian. Nevertheless,
the level set method tends to alter the volume of each phase in the course of
the simulation. This occurs because the level set field itself does not hold an
information on the volume of either phases. Therefore, when the level set field
is updated at each time step to account for the motion of the interface, it is not
possible to numerically enforce volume preservation, and the interface might
be moved a little bit too far in some places or not far enough in other places,
resulting in a net gain or loss of phase volume.

For comprehensive and detailed explanations of the subject see Sethian’s
book [132] or Osher’s book [133], for an overview of traditional level set methods
see the reviews by Osher and Sethian [134] [135], for an historical point of view
see Sethian’s PhD thesis [136] this article by the same author [137] or the
vulgarization article by Sethian [138] in the American Scientist.

3.1.4 Volume of fluid

Perhaps the most widespread interface capturing method is the Volume of Fluid
(VOF) method (Fig. 3.1e). Indeed many commercial CFD software propose
VOF as the default or even the only method for simulating multiphase flows.
In VOF, each cell in the domain holds a volume fraction value : if f = 0, then
the cell is full of fluid #1, if f = 1 it is filled with fluid #2, lastly if 0 < f < 1,
the cell is filled with a certain proportion of both fluids. Hence the interface
crosses all cells whose volume fraction is between 0 and 1, but its shape is not
specified directly.

The volume fraction field is kept updated by solving an advection equation
using a finite volume scheme, which guarantees exact conservation of volume
fraction: no amount of fluid #1 or #2 can vanish or appear during the simu-
lation.

Whereas the level set field holds geometrical information but no volume
information, the VOF does exactly the opposite: it holds a volume information
but no geometrical information. As a consequence, it is very good at con-
serving volume, however computing normals or curvature is more difficult. If
the evaluation of such quantities is required by the governing equations (for
instance because they embed a surface tension term), then the interface must
be reconstructed from the volume fraction information. Several reconstruction
methods exist including PLIC1 [139], PROST2 [140] or THINC3 [141] [142] etc.
Moreover, for each reconstruction method, several numerical implementations

1Piecewise Linear Interface Calculation.
2Parabolic Reconstruction Of Surface Tension.
3Tangent of Hyperbola for INterface Capturing.

3.1. Selecting an interface capturing method 39

of that method exist: for instance PLIC can be implemented using Young’s
method or LVIRA4 [143] amongst others.

3.1.5 Hybrid methods
Each method has advantages and weaknesses of its own. Therefore, selec-
tion of the method strongly depends on the type of problem that is being
solved. A problem which emphasizes mass conservation will prefer using the
VOF method, while a problem requiring accurate computation of the surface
tension force will prefer a level set method, etc. In an effort to combine the
strength of each individual method, methods combining several “pure” methods
have been developed. Such methods are referred to as hybrid methods.

For instance the Coupled Level Set/Volume-Of-Fluid (CLSVOF) method
introduced by Sussman and Puckett in 2000 [144] combines a VOF method
that naturally conserves mass with a level set method that allows to compute
curvature more naturally.

Another example is the particle level set method introduced by Enright,
Fedkiw et al. in 2002 [145]. It was designed as an alternative to Sussman’s
CLSVOF that aims at a more accurate computation of curvature than what
can be achieved with VOF or CLSVOF methods.

The main drawback of hybrid methods is their complexity as compared to
“pure” methods. This implies greater implementation efforts of course, as well
as those methods being more expensive in terms of memory and/or CPU usage,
and them being more complex.

3.1.6 Recent evolutions
In the last decade, the two most popular methods were the VOF method, used
for problem where volume preservation is important, and the level set method
preferred for cases where computing geometric information is critical. Authors
have tried to address those weaknesses in a quest for the ultimate method :
the one which would both conserve volume and at the same time allow easy
computation of geometric information.

On one hand VOF users have investigated other ways to reconstruct the
interface or new implementations of existing reconstruction paradigms such
as WLIC5 [146] or 3D-THINC [147], leading to some improvements while not
changing the core of the VOF method itself.

On the other hand some authors have attempted to devise a conservative
level set method. One of the early works in that direction was made by Olsson
and Kreiss in 2005 [148] (see also Marchandise et al’s 2007 work [149] for a
spectral conservative level set method). This work showed that contrary to
a widespread belief level set methods could possibly be conservative. From
that point on several authors have proposed improvements to that method
eventually leading to Chiodi and Desjardins’ 2017 solution [150].

4Least square Volume-of-fluid Interface Reconstruction Algorithm.
5Weighted Line Interface Calculation.

40 Chapter 3. Interface capturing VPM method

It is important to note that conservative level set methods are very new
and not yet very mature, although results are very encouraging. Therefore
special caution must be taken. In particular, before Chiodi and Desjardins’
2017 work [150] several authors, such as Olsson Kreiss & Zahedi in 2007 [151],
Waclawczyk in 2015 [152] or Desjardins himself with Pitsch in 2008 [153], have
been proposing conservative level set methods that were flawed. In particular,
several methods tend to artificially generate oscillations at the fluid interface
which can in some case result in the creation of trailling bubbles that do not
exist in the physical flow.

Additionally, even-though particle methods seem to have lost in attractive-
ness, a particle-mesh discretization of the “pure” level set method by Hieber
and Koumoutsakos in 2005 [18] borrows some advantages of the particle method
in terms of advection accuracy, while keeping the power and simplicity of the
classic level set method. This approach will be used in the present work.

3.1.7 Chosen method

The ideal interface tracking/capturing method (i) advects the interface ac-
curately, (ii) handles topological changes robustly and easily, (iii) allows the
computation of curvature accurately and with little effort, (iv) conserves the
volume of each phase. Unfortunately, such an ideal method does not exist. . .
Instead each has strengths and weaknesses of its own as is summarized in Table
3.1. Therefore one needs to consider which method is most appropriate to our
case.

In our target application (see section 1.1), the accurate computation of
surface tension effects is critical to us, while volume conservation not so much.
Indeed it is extremely important to accurately model the geometry of the menis-
cus formed at the line of contact between liquid metal, argon atmosphere and
the walls of the reactor’s pool and internals. Additionally we want our method
to be able to simulate most flows occurring in a nuclear reactor, including bub-
ble entrainment which involves topological changes. Eventually we want our
method to be simple and elegant and hence robust. Therefore hybrid methods
will not be used. Hence the level set method is the most attractive method in
our case.

3.2 Level set method

In the level set method (Fig. 3.1d), the interface’s position is captured by using
a signed distance function φ(·). At any point xxx in space, the absolute value of
φ(xxx) indicates the shortest distance separating xxx from the interface

|φ(xxx)| = min
xxxΓ∈Γ

‖xxx− xxxΓ‖ (3.2)

3.2. Level set method 41

Table 3.1: Capabilities of interface tracking/capturing methods

Interface
tracking Interface capturing Hybrid methods Emerging

methods

Relevance to
study case

Front
tracking Level set VOF Particles CLSVOF Particle

level set
Conservative

level set
Handling
topological
changes

+++ + +++ +++ +++ +++ +++ +++

Computing
curvature +++ + +++ + + ++ +++ +++

Conserving
volume + + + +++ ++ +++ +++ +++

Advecting
interface +++ +++ ++ ++ +++ ++ ++ ++

Simplicity N/A + +++ +++ +++ + + ++

Maturity N/A +++ +++ +++ +++ ++ ++ +

and its sign indicates whether xxx is within one fluid or the other

φ(xxx) < 0 ⇒ xxx ∈ Ω− (3.3a)

φ(xxx) > 0 ⇒ xxx ∈ Ω+ (3.3b)
φ(xxx) = 0 ⇒ xxx ∈ Γ (3.3c)

3.2.1 Updating the level set field to follow the interface
Since the interface moves through time, the level set information must be kept
updated accordingly. To do so, the level set equation is used, which is merely
an advection equation

∂φ

∂t
+ (uuuΓ · ∇∇∇)φ = 0 (3.4)

where uuuΓ at a given point xxx is equal to the velocity uuu(xxxΓ) at the closest interface
point xxxΓ. Said differently, uuuΓ is the extension of the velocity uuu at the interface
Γ to the rest of the domain Ω such that the velocity uuuΓ remains constant along
each normal line N

uuuΓ = uuu on Γ (3.5a)
uuuΓ(xxx) = cte ∀xxx ∈ NxxxΓ (3.5b)

where NxxxΓ is the normal line crossing the interface Γ at point xxxΓ.
There are ways to numerically extend interface velocities: the idea was first

suggested by Adalsteinsson and Sethian in 1999 [154] and has evolved since,
in particular see the more recent work of McCaslin Courtine and Desjardins in

42 Chapter 3. Interface capturing VPM method

(a) Constant velocity:
∂v
∂y

= 0
⇒ level set preserved

(b) Increasing velocity:
∂v
∂y

> 0
⇒ level set stretched

(c) Decreasing velocity:
∂v
∂y

< 0
⇒ level set compressed

Figure 3.3: Influence of velocity variations in the normal direction on level set
distortion. Three level set iso-contours () are advected over a time lapse
of one by a velocity field which displaces them to their new location ().
The arrows () represent the velocity vector at interface points ().

2014 [155]). However they are quite costly6. An alternative is to assume that
the velocity at points in the neighbourhood of the interface is sufficiently close
to the interface velocity, such that it can be used directly

∂φ

∂t
+ (uuu · ∇)φ = 0. (3.6)

However, this assumption is not exactly true. The small fluctuations of velocity
values in the normal direction will either “compress” or “stretch” the level set
field along normals, thereby displacing level set iso-contours. This is shown
by Figure 3.3 which shows three level set set iso-contours that are advected
either at equal velocity (Fig. 3.3a), increasing velocities in the vertical direction
(Fig. 3.3b) or decreasing velocities (Fig. 3.3c). As a consequence, the level set
field no longer corresponds to a distance function.

3.2.2 Boundary conditions for level set

The level set advection and reinitialisation problems require a boundary con-
dition on the level set field. The choice of this boundary condition has a direct
influence on the contact angle of the level set at the wall. For instance, enforc-
ing an even boundary condition on level set will naturally yield a fluid interface
that is always normal to the wall. Apart from periodic boundary conditions,
two distinct physical cases can be encountered : either (i) the flow is bounded
by a wall or (ii) the flow is unbounded.

In the latter case, it is most natural to pursue the level set field beyond
the boundary of the computational domain by enforcing D2φ

Dn2 = 0. However,
without additional care this boundary condition can lead to spurious apparition
of bubbles in the ghost node region.

In the first case, an angle of contact must be chosen as a boundary condition
for the level set field. To do so, three options are possible. Those are listed from
the simplest to implement to the most realistic : either (i) enforce a contact
angle of 90 degrees, which merely consist in considering the level set field as an

6The procedure is very similar to the reinitialization procedure that will be presented in
Section 3.2.4 but it must be performed at each time step.

3.2. Level set method 43

even function around the boundary. Or (ii) use the fluid’s static contact angle
[156], which is a constant. Finally (iii) the third and most accurate option is
to devise a boundary condition that accounts for the dynamic contact angle.

However, the physical law that governs it is very complex. This is due in
great part to the influence of very small scale phenomena on macroscopic be-
havior of the fluid. For instance, the 2010 article by Ren et al. [157] discussed
the influence of molecular dynamics on the motion of the contact line. Addi-
tionally a 2014 work by Kirkinis and Davis showed the existence of Moffatt
vortices on the sides of a moving contact line [158], phenomenon further char-
acterized in 2017 by Febres and Legendre [159]. However, some methods exist
that are valid in certain situations. In particular a 2015 article by Legendre
and Maglio presents a numerical implementation for moving contact lines that
was validated against experiments [160]. It is based in part on the Cox-Voinov
model instead of the Navier slip length model used by most authors (for in-
stance see the 2009 work by Afkhami et al. [161]). The Cox-Voinov law is
an asymptotic solution valid for low Capillary numbers and which was first
derived by USSR researcher Voinov in 1976 [162] and later reintroduced in the
Western world by Cox in 1986 [163].

In this thesis, the simple even boundary condition has been used on the
level set field. More advanced methods are relevant for future works but will
not be used here.

3.2.3 Non-smoothness of level set field
The level set field is always continuous, but not its derivatives. Practically,
maximas of level set appear as kinks in the field which sometimes are referred to
as level set shocks in the literature [133]. Figure 3.4 shows three bubble shapes
for which such kinks can be observed. The ellipse (Fig. 3.4a) shows that even
in the case of a rounded, smooth fluid interface such kinks can occur. In that
case it appears in the center of the ellipse where the level set characteristics
from the upper side of the bubble meet the characteristics from the bottom
side. The square-shaped bubble (Fig. 3.4b) is of course generally not obtained
in physical situations, but is presented here as it is a good example of the level
set field around corners. The presence of corners on a fluid interface yields
“expansion fans” on one side of the fluid interface and a shock on the other
side. Eventually, the drop-shapped bubble (Fig. 3.4c) displays a combination
of the effects observed in the two previous cases.

It is therefore important to use schemes that are resilient against discon-
tinuities. Therefore WENO schemes [164] are used to discretize the partial
derivative operator in the level set equations. A high-order spatial discretiza-
tion scheme (WENO5) is used because accuracy in the capturing of the interface
motion is critical in our application (see appendix B).

3.2.4 Level set reinitialization
Unfortunately, as the simulation advances, the small distortions in the level set
field caused by the constant-velocity assumption of equation 3.6 will accumu-
late, leading to an error too large to be negligible. To regularize φ(·) back into

44 Chapter 3. Interface capturing VPM method

(a) Ellipse (b) Square (c) Trailing drop

Figure 3.4: Possible shapes for bubbles or drops are shown with their corre-
sponding level set fields () and interfaces (). Shocks () and
expansion fans () can be observed.

a signed distance function, the simulation is frozen in time and the level set
reinitialization procedure is performed.

There are two main ways to reinitialize the level set field : the Hamilton-
Jacobi and the Fast Marching approaches. The spirit of both methods are
briefly described, then details of their numerical implementation is given. The
study of both methods is required because of a discussion on the curvature
calculation that will follow. For a review of reinitialization methods see the
2006 article by Jones et al. [165].

General approach of the Hamilton-Jacobi reinitialization

A first approach is the Hamilton-Jacobi reinitialization and consists in propa-
gating correct level set values from the interface to the rest of the domain.

Practically, just before calling the reinitialization procedure, the flow sim-
ulation has been frozen at time t. The level set field at that point of time
φ(xxx, t) happens to be distorted. The reinitialization procedure consists in solv-
ing an initial value problem on a new level set field variable φreinit(xxx, τ) that
is function of space and of a “reinitialization time” τ . For all values of the
reinitialization time τ , the actual time remains frozen at a value t. Firstly,
the reinitialization level set φreinit is initialized as the distorted level set φ(t)
from the flow simulation, so that the reinitialization problems know about the
interface’s location. Then the reinitialization problem in the exterior region
Ω+ is solved

∂φreinit
∂τ + (n̂̂n̂n · ∇)φreinit = 1 on Ω+

φreinit = φ(t) at τ = 0

φreinit = 0 on Γ

(3.7)

as well as the reinitialization problem in the interior region Ω−

∂φreinit
∂τ + ((−n̂̂n̂n) · ∇)φreinit = −1 on Ω+

φreinit = φ(t) at τ = 0

φreinit = 0 on Γ

(3.8)

3.2. Level set method 45

Eventually, the simulation’s distorted level set field φ(t) is overwritten with the
fully reinitialized level set field φreinit(τ →∞)

φ(t)← φreinit(τ →∞) (3.9)

To better understand the meaning of those two problems’ equations, note
that they are of hyperbolic form and hence can be expressed as a set ODEs

Dφreinit
Dτ

= +1 on N(xxxΓ) ∩ Ω+

φreinit = 0 on Γ
(3.10)

and

Dφreinit
Dτ

= −1 on N(xxxΓ) ∩ Ω−

φreinit = 0 on Γ
(3.11)

along characteristics. The latter are straight lines following normals N(xxxΓ) in
space and a slope of 1 in time. Integrating those ODEs therefore corresponds
to moving along a normal line starting from the interface, and increasing (or
decreasing) the level set values at a rate of one per unit distance travelled
(Fig. 3.5). In other words, this propagates correct level set values from the
interface to the rest of the domain.

(a) Reinitialising in the exterior region (b) Reinitialising in the interior region

Figure 3.5: Hamilton-Jacobi approach to level set reinitialization : : (i) start
from the interface, (ii) move away from the interface at a speed of one following
the normals and (iii) the level set value at current point of space is equal to
the pseudo-time elapsed since the departure from the interface.

General approach of the Fast Marching reinitialization

The other popular reinitialization method is the Fast Marching Method (FMM)
approach which was introduced by Sethian in 1996 first briefly in [137] then with
more details in another article of the same year [166]. It consists in replacing
the current distorted level set field φ(t) by a reinitialized level set field φreinit

φ← φreinit (3.12)

46 Chapter 3. Interface capturing VPM method

where φreinit(xxx) is the solution to the eikonal problem

find φreinit such that

{
‖∇φreinit‖ = 1 on Ω

φreinit = 0 on Γ
(3.13)

Contrary to the Hamilton-Jacobi method, the reinitialization level set φreinit(xxx)
is merely a function of space xxx (and not a function of a “reinitialization time”
τ). The eikonal equation is solved using the Fast Marching algorithm, hence
the name of this method. From the location of the interface Γ indicated by the
distorted level set field φ(t), the Fast Marching algorithm finds the closest cell
and computes the level value it must hold such that the eikonal equation holds
true. This process is repeated until all cells have been processed.

Hence the FMM requires a sorting algorithm to find out which is the closest
cell. Depending on the sorting strategy different algorithmic complexities can
be achieved. Most FMM methods use heap-sort and have O(N log(N)) com-
plexity, where N is the number of points where the level set function must be
reinitialized. Yet Yatziv proposed in 2005 [167] a method based on an array of
linked lists that reduced the algorithmic difficulty to linear complexity O(N).
In comparison, Hamilton-Jacobi methods are always O(N log(N)). However,
because of the requirement of having to find the closest cell, Fast Marching
Methods are more difficult to parallelize than Hamilton-Jacobi methods [168]
[169] [170]. For that last reason, Hamilton-Jacobi methods will be preferred in
this thesis.

From this point on, in order to simplify the notations, φreinit will simply
be denoted as φ.

Implementation of the Hamilton-Jacobi reinitialization

The two Hamilton-Jacobi reinitialization problems that are valid in the exterior
region (Eq. 3.7) and in the interior region (Eq. 3.8) are solved numerically as
a single problem holding across the whole domain. The equation of the new
problem is

∂φ

∂τ
+ signφ(φ) (‖∇hφ‖ − 1) = 0. (3.14)

where the sign function signφ(φ) allows a smooth transition between the interior
Ω− and exterior Ω+ regions’ problems.

Indeed, the signφ(·) function cannot be a simple sign function

signφ(φ) :=

+1 if φ > 0

−1 if φ < 0

0 if φ = 0

(3.15)

because that would introduce discontinuities which is incompatible with the
finite differences method. Instead a smeared variant of that function is often
used [171]

signφ(φ) :=
φ√

φ2 + h2
x

(3.16)

3.2. Level set method 47

However, reinitializing the level set field introduces numerical errors that tend
to displace slightly the interface. For that reason we prefer the sign function
recommended by Russo and Smereka in their 2000 article [172] that has less
influence on the interface.

signφ(φ) :=
φ√

φ2 + ‖∇φ‖2 h2
x

(3.17)

The level set gradient ∇hφ used in (Eq. 3.14) is defined as

∇hφ = Dxφ ê̂êex + Dyφ ê̂êey (3.18)

where Dxφ and Dyφ are computed as proposed by Rouy and Tourin in their
1992 work [173], which is

Dxφ :=

{
max

(
0,+D−x φ,−D+

x φ
)

if φ > 0 (3.19a)

max
(
0,−D−x φ,+D+

x φ
)

if φ < 0 (3.19b)

where D−x φ and D+
x φ are the numerical approximations of the level set x-

derivative obtained using respectively downwind and upwind WENO5 schemes
(instead of the first order decentered schemes used by Rouy and Tourin). This
equation (Eq. 3.19a) (Eq. 3.19b) is a simpler but equivalent formulation of the
one used in most articles (for instance [174]). Using the Rouy and Tourin
scheme is hence equivalent to enforcing upwinding

Advection velocity < 0 ⇒ Use downwind scheme (3.20a)
Advection velocity > 0 ⇒ Use upwind scheme (3.20b)

in all cases except in the “cup” situations (Fig. F.1e) (Fig. F.1j) where

∂φ

∂t
= signφ(φ) (3.21)

is enforced. The equivalence of Rouy and Tourin scheme with downwinding
is further discussed in Appendix F.2.1. Moreover, Rouy’s and Tourin’s article
[173] also proves the scheme’s convergence, consistency and monotony in the
case where the gradient is computed using a first order decentered discretiza-
tion.

The full numerical implementation of the level set implementation is de-
scribed in Appendix C.1.1. The space derivatives of the level set functions
embedded in this algorithm are computed using the WENO schemes described
in (Algo. 5).

Implementation of the Fast Marching reinitialization

The first task that a Fast Marching Method must do is find the closest node.
The algorithm of a heap-sort Fast Marching Method is specified in Appendix
C.1.2. More details on how nodes are sorted and prioritized is given there.

Once the closest node has been found, its level set value must be com-
puted such that the eikonal equation (Eq. 3.13) is verified. To do so, the gra-
dient is discretized in the same way as for the Hamilton-Jacobi reinitialization

48 Chapter 3. Interface capturing VPM method

(Eq. 3.19a) (Eq. 3.19b) except that we are not computing a derivative from
known level set values but instead a level set value from a known derivative
value. Hence the eikonal equation

√
(Dxφ)2 + (Dyφ)2 = 1 (3.22)

is transformed into a quadratic equation on φi,j

φ2
i,j − φi,j (φx + φy) +

(
φ2
x + φ2

y − h2

2

)
= 0 (3.23)

where

φx :=

{
min(φi−1,j , φi+1,j , φi,j) if φ > 0

max(φi−1,j , φi+1,j , φi,j) if φ < 0
(3.24)

and

φy :=

{
min(φi,j−1, φi,j+1, φi,j) if φ > 0

max(φi,j−1, φi,j+1, φi,j) if φ < 0
(3.25)

can be computed from known level set values. Equation 3.23 has two roots,
one being always positive and the other always negative. Hence

φi,j :=

φx + φy +
√

2h2 − (φx − φy)2

2
if φ > 0

φx + φy −
√

2h2 − (φx − φy)2

2
if φ < 0

(3.26)

However, equation 3.26 cannot be used in all cases. Indeed it requires to
have at least one frozen neighbour on the left or right and one on the bottom
or top. If only one of the neighbours is known (Fig. 3.6a) then equation 3.26
cannot be used. Instead we must start again from the eikonal equation

√
(Dxφ)2 = 1 (3.27)

which yields
(φi,j − φx)2 = h2 (3.28)

where φx is the same as in (Eq. 3.24) and whose solution is

φi,j =

{
φx + h if φ > 0

φx − h if φ < 0
(3.29)

Figure 3.6 shows the four situations that can be encountered. Case (a) must
use equation 3.29 whereas all the other cases can use equation 3.26.

3.2.5 Local level set method
The level set function serves two purposes : (i) to decide a value for ρ(xxx), µ(xxx)
and δε(xxx) using equations 4.28 and 4.3 and (ii) to compute geometric infor-
mation on the interface, namely normal vector (Eq. 4.4) and mean curvature

3.2. Level set method 49

(a) Reach-out (b) Corner (c) T-junction (d) Extrema

Figure 3.6: Possible cases where the level set value of “candidate” cell () has
to be computed from neighbouring “frozen” nodes () whose level set value
has already been fixed. () are nodes whose level set value is either not yet
known or not part of the stencil and hence cannot be used in the computation.

(Eq. 4.10). In both cases, level set values are only useful in the direct surround-
ings of the interface. To diminish the computational cost of the method, the
level set function can be restricted to a band of a certain thickness surrounding
the interface. However, restricting the level set function in the mathematical
sense is burdensome to implement. As an alternative, the level set function is
still defined on the whole domain, but its values are saturated beyond a narrow
band of thickness of φthrs : that is the local level set method that was intro-
duced by Adalsteinsson and Sethian in 1994 [175] (see also Peng’s 1999 work
[171]).

Level set saturation

After each advection or reinitialization of the level set field φ, the following
saturation operation is applied to it

saturate(φ) :=

+φsat if φ > +φthrs

−φsat if φ < −φthrs
φ otherwise

(3.30)

where φsat is the level set saturation value and φthrs is the level set threshold
value. Saturating level set values allows to keep level set values where they
are meaningful, while leaving the choice to either ignore the nodes where they
are not useful or to perform the computations there anyway (as long as their
result is neutral). If the computation is expensive, such as WENO5 schemes
for instance, then it might be cheaper to not perform it on saturated regions.
On the other hand, for cheaper operations, the algorithmic branching (“if [...]
then [...]” instructions) involved when filtering out saturated regions might be
more expensive than performing the computation across all the domain.

It is critical that the level set saturation value φsat be greater than the
level set threshold φthrs. Indeed, performing computations on the level set
field might alter slightly the level set values in the saturated region. For the
level set field in the saturated region to remain beyond the level set saturation
threshold despite those numerical fluctuations, its saturation value must be
slightly greater than the threshold. As a consequence, one chooses

φsat = φthrs +
h

2
. (3.31)

50 Chapter 3. Interface capturing VPM method

Filtering out saturated regions

Whether a given node is within the saturated or non-saturated region of the
level set field is indicated by the level set mask mask(xxx). It is a field defined
as

mask(xxx) =

{
1 , if |φ(xxx)| < φthrs

0 , otherwise
(3.32)

Nodes with a mask value of one are said to lie within the level set mask, and
correspond to nodes whose level set value can be used in the computations.

Level set values are sometimes used directly, for instance the viscous term

Dω

Dt

∣∣∣∣
i,j

=
1

ρi,j
∇×

(
∇·
(
µ
(
∇uuu+∇uuuT

)))
+ [...] (3.33)

embeds the mass density ρi,j(φi,j) at node (i, j), whose value is computed from
the level set φi,j at the same node (Eq. 4.28). Other times, finite difference
schemes take as input level set values at several nodes. For instance the dy-
namic viscosity µ embedded inside the same viscous term is going to be used
in the finite difference schemes discretizing the curl and divergence operators.
Therefore, in order to compute Dω

Dt

∣∣
i,j

at node (i, j), the dynamic viscosities
µi−1,j , µi,j , µi+1,j , etc must be known, and they are determined respectively
from φi−1,j , φi,j , φi+1,j , etc. In such cases, the level set values that are of
influence on the finite difference scheme should all belong to the level set mask.

It is therefore relevant to define a second type of mask that will be referred
to as a “safe-zone”, within which Dω

Dt

∣∣
i,j

can safely be computed. The safe-
zone is hence a subset of the mask and its thickness depends on the width
of the stencils used. More precisely it is obtained by leaving out as many
node layers from the mask as is necessary to make the widest stencil of the
method fit within it. Note that higher-order schemes have wider stencils and
hence require a larger gap between the boundary of the mask and that of the
safe-zone. Also, from experience, the level set value of the outer node layer of
the mask tends to be affected by the reinitialization and advection operations
and would rather not be used in the computation. All in all, the safe-zone
safeZone(xxx) is obtained by removing the outer ring of mask-flagged nodes
plus as many nodes as needed to fit all finite difference stencils, three in our
case.

To formalize the present argument, the extend (·) and shrink (·) operators
are defined that take as input a set of nodes Vh ⊂ Ωhhh of the grid Ωhhh. The
extend (·) operator is defined as the operator that adds all the direct neighbours
of nodes already within Vh

extend (Vh) := Vh ∪ {xi,j : ∃x ∈ Vh s.t. ‖x− xi,j‖ = h} (3.34)

while the shrink (·) operator removes all points of Vh that have at least one
neighbour that is not in Vh

shrink (Vh) := Vh \ {xi,j : ∃x ∈ Ωhhh \ Vh s.t. ‖x− xi,j‖ = h} (3.35)

3.2. Level set method 51

Applying the same operator several times allows to extend or shrink the mask
by more than one layer

shrink2 (Vh) = shrink (shrink (Vh)) (3.36a)

extend2 (Vh) = extend (extend (Vh)) (3.36b)

In order to define the safe-zone, note that the largest stencil used in our
method happens to spread by two nodes from its center. Hence, in our case
the safe zone will be obtained by shrinking the mask by three nodes : twice
to allow the stencil to remain within the mask plus once to remove the outer
ring of nodes whose level set values are a bit distorted by the reinitialization
procedure.

safeZone(xxx) := shrink3 (mask(xxx)) (3.37)

Level set reinitialization in the local level set framework

The local level set does not require any significant change in the way level set
is advected, apart from filtering out nodes that are not within the mask.

On the other hand, the level set reinitialization requires special treatment.
Indeed, the mask must first be extended so as to cover parts of the saturated
region, otherwise the reinitialized field might be incorrect. Figure 3.8 shows a
reinitialization procedure done right, whereas Figure 3.7 shows a reinitializa-
tion called without prior extension of the level set mask. Both figures start
from the same level set field (Fig. 3.7a) (Fig. 3.8a), only the mask is different.
The level set field is constituted by two slopes, the left one is not as steep as it
should be whereas the right one is too steep. In between there are three regions
of space where the level set is saturated. The problem occurs with the right-
ward slope (the one that is too steep). Since reinitialization only acts from
within the level set mask in the first case (Fig. 3.7), the new (correct) slope
does not have enough space to reach the saturated regions (Fig. 3.7b). This
yields a discontinuous curve for the level set field (Fig. 3.7c). This issue is not
encountered in the second case (Fig. 3.8) because the mask has been extended
before the reinitialization and hence the new slope reaches and even overruns
the level set saturation value (Fig. 3.8b). After saturation, a nice continuous
curve is obtained for the level set field (Fig. 3.8c). A general algorithm for local
reinitialization is described in Algorithm 3.

Algorithm 3: Level set reinitialization in the local level set framework

1 mask← computeMask(Φ)

2 mask← extend3 (mask)
3 Φ← reinitialize(Φ, mask)
4 Φ← saturate(Φ)

Parameters for level set reinitialization

Ideally, the reinitialized level set field is the solution of the reinitialization prob-
lem φreinit(τ → ∞) as the reinitialization time τ tends to infinity. However,

52 Chapter 3. Interface capturing VPM method

(a) Initial condition (b) After reinitialization (c) After saturation

Figure 3.7: Local reinitialization without mask extension

(a) After mask extension (b) After reinitialization (c) After saturation

Figure 3.8: Local reinitialization with mask extension.
() is the plot of the level set function φ against x and () are the
level set saturation values. The mask is equal to 1 () on some part of
the x-axis and to 0 () elsewhere. () are the points where the level set
φ is equal to zero which correspond to the bubble’s interface.

this is not acceptable in practice. Instead, a finite integration period δτ is used
that is sufficiently long to allow for the correct level set values to propagate
from the fluid interface Γ to all nodes within the level set mask. Since the
reinitialization equation uses the normal n̂̂n̂n as advection velocity, those values
propagate at a speed of one. Hence, δτ is chosen to be equal to the width of
the level set mask times a safety coefficient : δτ := 1.2φthrs.

The Hamilton-Jacobi reinitialization procedure also requires choosing a time
integrator and a time step value hτ . An Euler-Explicit time integration is used
because (i) it is computationally cheaper than other time integrators and (ii)
what is relevant here is the steady state φreinit(τ →∞), not the transient state
and hence temporal accuracy is not important. Additionally, the time step it
uses must be chosen such that a CFL condition is satisfied. More specifically,
the chosen CFL value is 0.1, which is achieved with a time step hτ equal to
0.1hx.

3.2.6 Strategies to trigger level set reinitialization
The reinitialization process is both costly and tends to slightly displace the
interface artificially. On the other hand, if not performed frequently enough, it
can lead to nonphysical results. Three strategies can be considered to trigger
reinitialization:

• reinitfull,n: reinitialise over the whole level set mask every n time step

• reinitalways,n: reinitialise over n grid cells every single time step

• reinitdistorted: reinitialise over the whole level set mask every time the
level set becomes too distorted.

3.2. Level set method 53

The last criterion requires a measure of the level set distortion.

Measuring level set distortion

The level set distortion can be measured by measuring the rate at which it gets
distorted as proposed by McCaslin and Desjardins in 2014 [176],

distortion(φ) := max
xxxΓ∈Γ

(
|n̂̂n̂nT S(xxxΓ) n̂̂n̂n|

)
(3.38)

where S(xxx, t) := 1
2

(
∇uuu+∇uuuT

)
is the strain tensor. Another option is to

measure it directly as suggested by Gomez et al. in 2005 [177]

distortion(φ) := max
xxxi,j∈Ωhhh

(‖∇φ‖ − 1) (3.39)

Gomez et al’s measure (Eq. 3.39) can appear very attractive, however it lacks
robustness because it cannot handle the level set shocks properly (Fig. 3.4).
Indeed on a shock, the gradient of level set can be anywhere between zero and
one. On the other hand, the first method is unaffected by this issue. Neverthe-
less measuring distortion rates instead of distortion itself makes the choice of
a tolerance criterion difficult because two fields, one being more distorted than
the other, might have identical rates of distortion. This is certainly what moti-
vated Herrmann’s criterion in his 2008 article [178], which is a variant of Gomez
et al’s [?] proposal that is essentially insensitive to low level set gradients.

Reinitialise whenever ∇φ < 10−4 or ∇φ > 2 (3.40)

where the choice of those two particular values is not explained by Herrmann.
In that case however, only the compression of level set iso-contours are detected,
and their stretching is almost completely ignored.

Another idea would be to complete the second criterion (Eq. 3.39) by fil-
tering out the shocks. Shocks can be detected with the second derivative of
the level set field. Indeed, away from shocks the laplacian of a level set field
is function the interface’s curvature only, which yields rather small laplacian
values. On the other hand, level set gradients vary much more across shocks
which yields larger laplacian values. Therefore, one could distinguish the case
away from shocks where the naive criterion (Eq. 3.39) can safely be used, and
the case around shocks where only gradients that are too steep are looked after

distortion(φ,xxxi,j) :=

{
max(‖∇φ‖, 1)− 1 if shockEval(φ,xxxi,j) > shockThrs

‖∇φ‖ − 1 otherwise
(3.41)

where the shock measure shockEval(xxx, t) is defined as

shockEval(φ,xxxi,j) := ‖h∇2φi,j‖ (3.42)

This can be seen as a variant to Herrmann’s proposal (Eq. 3.40). The param-
eter shockThrs will be taken to 0.4, and the threshold value for distortion(φ)
beyond which reinitialization must be performed is set to 0.1. Following the
numerical experiment described in Section 6.6.1, it was decided to reinitialize
whenever the level set field became too distorted in respect to criteria (Eq. 3.41).

54 Chapter 3. Interface capturing VPM method

3.3 Particle-based level set
Both the level set advection equation (Eq. 3.6) and reinitialization equations
(Eq. 3.7) (Eq. 3.8) are transport equations. In other words their only term is
an advection term, put aside the +1 or −1 source term of the reinitialization
equation. It is hence tempting to express those equations in the Lagrangian
frame of reference so that they become

∂φ̃

∂t
= 0

∂XXXp

∂t
= ũuu

(3.43a)

for the advection equation and

∂φ̃reinit
∂τ

= +1

∂XXXp

∂τ
= +n̂̂n̂n

(3.44a)

∂φ̃reinit
∂τ

= −1

∂XXXp

∂τ
= −n̂̂n̂n

(3.44b)

for the reinitialization equations, where φ̃(XXXp, t) and φ̃reinit(XXXp, t) are functions
of Lagrangian coordinates (XXXp, t), that is particles’ initial positionXXXp and time
t.

Unfortunately, such Lagrangian level set reinitialization is not that simple to
implement, and it must instead be solved on the grid using either the Hamilton-
Jacobi procedure (Algo. 10) or the Fast Marching algorithm (Algo. 11). This
is due to the fact that the reinitialization equations describe the propagation
of correct level set values from the interface to the rest of the domain. The
Lagrangian-form of the reinitialization equations hence corresponds to moving
particles from the fluid interface to the rest of the domain. The problem is that
(i) it requires to seed particles at the interface explicitly whereas the traditional
grid-based reinitialization handles any point of the grid regardless of how far
from the interface they are located and (ii) on one side of a curved interface,
the particles will tend to move away from each other leaving a gap in between
them which yields Lagrangian distortion (see section 2.3.1).

Nevertheless, the advection equation can still be solved in the Lagrangian
frame of reference. This idea was proposed by Hieber and Koumoutsakos in
their 2005 article [18]. A summary of the implementation of a particle-based
level set method in given in Algorithm 4. Eventually, note that the local level
set framework can also be used for particle-based level set, and so will be the
case of the VPM method developed in the present thesis.

3.3. Particle-based level set 55

Algorithm 4: Particle-based level set implementation

1 Advect level set
for each particle in particleCloud do

XXXn+1
p = XXXnp +

´ tn+1

tn
uuup(t) dt

Φn+1
p = Φn

p

2 Reinitialise level set
if isTimeToReinitialise then

Φn+1 = P2M(Φn+1
p)

reinitialise(Φn+1)
Φn+1

p = M2P(Φn+1)

56 Chapter 3. Interface capturing VPM method

Chapter 4

Computing the phase- and
interface-dependent terms

In the previous chapter, a level set method has been presented to keep track of
the interface location. Using that information, source terms of the momentum
equation can be computed. In particular, the surface tension term, which
requires to know the interface’s location and curvature, and the viscous term
which needs to know in which phase and how far from the interface the current
point is located.

This chapter presents the numerical methods employed to compute both of
those terms, starting with the surface tension term and followed by the viscous
term.

4.1 Surface tension term
Now that a method has been established to capture the interface’s motion,
terms that require to know its location can be computed. This is the case
of the surface tension term which generates momentum only at or near the
interface and whose intensity is a function of its curvature.

Continuum Surface Force

Following the Continuum Surface Force (CSF) method that Brackbill Kothe
& Zemach introduced in their 1991 article [179], the surface tension force is
evaluated, for a velocity-pressure solver, as a volume force in the neighbourhood
of the interface

ρFFFΓ := − σ δε κ n̂̂n̂n (4.1)

where the signed curvature κ is defined as

κ := ∇· n̂̂n̂n (4.2)

and the smeared mollifier δε is defined as

δε(φ) :=
1

2ε

(
1 + cos

(π
ε
φ
))

(4.3)

57

58 Chapter 4. Computing the phase- and interface-dependent terms

(a) Case A (b) Case B

Figure 4.1: Computing direction of the surface tension force. An interface Γ
() separates the interior region Ω− () from an exterior region Ω+

() . Normal vectors () point from the interface towards the exterior
region. In both cases however, the surface tension force () must point
towards the center of curvature ().

and the normal to the interface n̂̂n̂n is computed as

n̂̂n̂n =
∇φ
‖∇φ‖ (4.4)

Several things can be noted: (i) that the force vector is along the normal
direction +n̂̂n̂n or −n̂̂n̂n, (ii) that it is proportional to the surface tension coefficient
σ, (iii) that it is proportional to the curvature of the interface κ := |∇· n̂̂n̂n|,
(iv) that it embeds a product with field δε(φ)

ρ(φ) which is invariant tangentially to
the interface and has a bell shape normally to it, and (v) that the direction of
the force is given by − sign(∇· n̂̂n̂n) n̂̂n̂n. To explain the latter point, note that the
surface tension force tries to flatten the interface and hence must always point
towards the center of curvature. Figure 4.1 shows the two possible scenarios:
a curved interface Γ separates the interior region Ω− to the exterior region
Ω+, and both subfigures show opposite locations of both phases. Note that
normal vectors n̂̂n̂n always point towards the exterior region Ω+ by convention.
In the first case (Fig. 4.1a), the normal vectors n̂̂n̂n point away from the center of
curvature. Moreover, the divergence of the normals ∇· n̂̂n̂n is positive and hence
− sign(∇· n̂̂n̂n) n̂̂n̂n equals −n̂̂n̂n which indeed points towards the center of curvature.
In the second case (Fig. 4.1b), normals point towards the center of curvature.
Additionally the normals’ divergence ∇· n̂̂n̂n is negative and hence − sign(∇· n̂̂n̂n) n̂̂n̂n
equals +n̂̂n̂n, which once again points towards the center of curvature.

For a vorticity equation the surface tension term is equal to the curl of the
one of the velocity equation (Eq. 4.1)

FFFΓ := −∇×
(
σ

ρ
δε∇· n̂̂n̂n n̂̂n̂n

)
(4.5)

Note that σ is a constant. Moreover, δερ is a function of the normal coordinates
only, hence its gradient ∇ δε

ρ is along n̂̂n̂n, and thus ∇ δε
ρ × n̂̂n̂n = 000. Therefore, the

surface tension term becomes

FFFΓ := − σ

ρ
δε∇×

(
n̂̂n̂n∇· n̂̂n̂n

)
(4.6)

4.1. Surface tension term 59

or even
FFFΓ = − σ

ρ
δε ∇(∇· n̂̂n̂n)× n̂̂n̂n (4.7)

since ∇× n̂̂n̂n = 000.
However, the latter and most expanded form (Eq. 4.7) tends to artificially

align the interface on the grid, whereas the other form doesn’t (Eq. 4.6). This
is shown in Section 6.6.2.

Computing curvature

Analytically, the curvature κ is defined as the absolute value of the divergence
of the normal to the interface n̂̂n̂n

κ := |∇· n̂̂n̂n| (4.8)

and since the normal is equal to the gradient of the level set field we have

κ = |∇2φ| (4.9)

However, that is only true for actual level set field and in the case of distorted
level set field this calculation generates substantial numerical error. Instead,
the level set gradient is normalized by its amplitude and hence calculated as

∇· n̂̂n̂n = ∇·
(∇φ
‖∇φ‖

)
=

∂xxφ (∂yφ)2 + ∂yyφ (∂xφ)2 − 2 ∂xφ∂yφ∂xyφ

‖∇φ‖3/2 (4.10)

However several authors have pointed out that computing curvature this
way (Eq. 4.10) can be problematic. Tornberg [180] uses a low-pass filter on
level set in her level set finite element code, Marchandise [149] uses a least mean
square level set reconstruction method in her Volume-of-Fluid Discontinuous
Galerkin solver.

Also some authors interpolate the curvature on the interface, for instance
using a Hamilton-Jacobi equation [181], or read the curvature at the interface
as done by Coquerelle and Glockner in 2015 [182]. Also Macklin and Lowengrub
[183] proposed in 2005 a method to compute curvature when the level set field
is distorted because of topological changes, method that has been generalized
by Lervåg in 2013 to be used on all types of solvers [184].

Also [185] uses a cut-off filter on curvature to eliminate values that would
be meaningless given the mesh’s grid spacing.

Those more advanced techniques won’t be used here, and instead the origi-
nal method will be used. This choice is motivated by the fact that multiphase
VPM solvers are very uncommon, and hence it is preferable to use simpler and
hence safer methods at least in a first stage.

4.1.1 Level set “Flip-flop” mode

A problem however occurs in vorticity codes when the shape of the fluid inter-
face displays or embeds a wavelength equal to two grid spacings i.e. a “flip-flop

60 Chapter 4. Computing the phase- and interface-dependent terms

mode”. Indeed with a collocated mesh it is impossible to “sense” this wave-
length.

This is shown by Figure 4.2 which presents plots of the flip-flop mode of a
level set field corresponding to a horizontal interface

φ(xxxi,j) = (xxxi,j · ê̂êey) + cos
(π
h

(xxxi,j · ê̂êex)
)

(4.11)

Note that the numerical gradient of level set ∇hφ is equal to ê̂êey at all grid
nodes, in other words this level set field appears numerically as non-distorted.
On the plots of Figure 4.2, each kink of the zig-zag corresponds to a level set
value stored at a xxxi,j grid node. The two subfigures differ in which grid nodes
are used to discretize vorticity and velocity: in Subfigure 4.2a velocity (black
markers) is collocated in respect to the level set field, while vorticity (gray
markers) is stored on a staggered grid. On the other hand, the other subfigure
(Fig. 4.2b) does the opposite: it expresses velocity in a staggered manner and
vorticity in a collocated way. As will be shown, the first subfigure corresponds
to a correct discretization while the second is subject to odd-even decoupling.
In both cases, and at all nodes, the normal vector is computed according to
equation (Eq. 4.4) which yields n̂̂n̂n = ê̂êey.

In the case of a velocity solver, the surface tension term in the momentum
equation is proportional to the divergence of normals −∇· n̂̂n̂n n̂̂n̂n. For a non-
distorted level set field this is equal to −∇2φ n̂̂n̂n, which can be further simplified
to a second order partial derivative in the x-direction −∂xxφ n̂̂n̂n. At the collo-
cated nodes (), this second derivative is alternatively strictly positive and
negative, which yields a certain surface tension force () in both directions
that tends at flattening the interface. On the other hand the second derivative
∂xxφ is exactly zero at the staggered nodes ().

In the case of a vortex method, the surface tension term is proportional to
the gradient of the divergence of normals −∇ (∇· n̂̂n̂n) n̂̂n̂n. This reduces in our case
to a third order derivative −∂xxxφ n̂̂n̂n, which can also be expressed as ∂x(∂xxφ).
It has been shown in the previous paragraph that ∂xxφ is exactly zero on the
staggered grid (and), and of alternatively positive and negative on the
collocated grid (and). Therefore, it is the opposite for the third derivative
∂xxxφ: it is zero on the collocated nodes (and) and alternatively positive
and negative on the staggered nodes (and). Hence the vorticity field is
best discretized on the staggered grid.

To summarize, the velocity solver requires a collocated grid, whereas the
vorticity solver needs a staggered grid. A more formal demonstration can be
found in Appendix F.2.2. One could point out that solvers for incompressible
flows that are based on the velocity-pressure formulation typically store the
velocity in a staggered fashion (so-called “MAC grid”). This staggering is such
that the x- (resp. y-) component of the velocity is stored on the West (resp.
South) edge of the grid cell. Note however, that the collocation requirement
that we are recommending here for the velocity solver consists in storing the
x- (resp. y-) velocity on the same line (resp. column) than the level set values.
Therefore the MAC staggering does observe this collocation requirement.

In practice, the consequence of using a collocated mesh in the vortex solver is
an odd-even decoupling where surface tension applies to odd and even nodes in a

4.1. Surface tension term 61

(a) Good : collocated mesh for veloc-
ity and staggered mesh for vorticity.
The surface tension term is non-zero in
both velocity and vorticity equations.

(b) Bad : staggered mesh for velocity
and collocated mesh for vorticity. The
surface tension term is exactly zero in
both velocity and vorticity equations.

Figure 4.2: Level set flip-flop mode and influence of grid staggering. ()
is a plot of the level set field. The round markers () or () resp. square
markers () or () represent nodes of the collocated resp. staggered grid.
Level set is always discretized on the collocated grid () or (). Black
resp. gray markers indicates nodes where velocity resp. vorticity is discretized.
Arrows () resp. () indicate the sign of the surface tension term for the
velocity resp. vorticity equations.

(a) t = 2.6 (b) t = 4.1 (c) t = 4.6 (d) t = 6.6

Figure 4.3: Level set field () and fluid interface () on a collocated
grid, no filters applied.

(a) t = 2.6 (b) t = 4.1 (c) t = 4.6 (d) t = 6.6

Figure 4.4: Same as Figure 4.3 but using a first order 2D filter.

62 Chapter 4. Computing the phase- and interface-dependent terms

segregated way. This can lead to very nonphysical simulation results. Figure 4.3
shows a simulation of an oscillating surface that has been ran using a collocated
mesh. The subfigures show the level set field and the interface location at
different times, from t = 2.6 to t = 6.6. As can be seen at t = 2.6 (Fig. 4.3a) the
interface appears to be smooth up until that time. Then small-scale oscillations
of small-amplitude become visible (Fig. 4.3b). Those grow stronger (Fig. 4.3c)
until they get so large that they alter significantly the physics of the flow and
even break the symmetry of the problem (Fig. 4.3d).

There are two solutions to this problem: either (i) a staggered mesh can
be used for vorticity or (ii) the collocated mesh can be kept but a filter must
be applied so as to remove the flip-flop mode in the level set field. The first
solution is far from trivial for a Lagrangian method such as the Vortex Particle-
Mesh methods. Indeed, having a staggered mesh implies that there are two sets
of particles and it is not clear how they must be advected (which requires the
velocity to be expressed on both sets of particles), nor if special care must be
taken to prevent particles of both sets to cross paths.

On the other hand, the filtering solution is much simpler to implement,
however it means that if the level set field is stored on a grid of spacing h
then the actual resolution of the level set computations will be of 2h because
of the filtering. Hence we achieve the same accuracy as on a grid twice coarser
but with a 22 = 4 times larger computational cost (in 2D). Nevertheless the
filtering solution will be used in the solver because multiphase Vortex Particle-
Mesh solvers are not common, and hence simplicity is to be preferred over
performance in such an early stage.

Two-dimensional discrete filters

In one dimension, the filtering can be applied using the discrete nth order filter
(see Jeanmart and Winckelmans 2007 Lx,n(·) [186]).

qi,j,filtered ← Lx,n(q) (4.12)

defined as

Lx,n(q) := qi,j − L n
x (q) (4.13)

where Lx is defined as

Lx(q) := −1

4
(qi−1,j − 2qi,j + qi+1,j). (4.14)

Such filtering achieves a gain of

|hλ,filtered|
|hλ|

= 1− sin2n

(
k h

2

)
(4.15)

where hλ is the harmonic of q of wavelength λ.
Two-dimensional filters can be obtained by composition of two one-dimensional

4.1. Surface tension term 63

filters

qi,j,filtered ← Ly,n(Lx,n(q)) (4.16a)
Lx,n(q) := qi,j − L n

x (q) (4.16b)
Ly,n(q) := qi,j − L n

y (q) (4.16c)

Lx(q) := − 1

4
(qi−1,j − 2qi,j + qi+1,j). (4.16d)

Ly(q) := − 1

4
(qi,j−1 − 2qi,j + qi,j+1). (4.16e)

where Ly,n is defined similarly to Lx,n but in the y-direction. The gain
of a composition filter corresponds to the product of the gains of both one-
dimensional filters (Eq. 4.15). On the other hand if one tries to combine both
filters by summing Lx(·) and Ly(·)
qi,j,filtered ← L ′n(q) (4.17a)

L ′n(q) := qi,j − L ′n(q) (4.17b)

L ′(q) := Lx(q) + Ly(q) = −1

4
(qi−1,j + qi+1,j + qi,j−1 + qi,j+1 − 4qi,j).

(4.17c)

then the resulting filter yields a combined gain that is the sum of the individual
filters’ gains (Eq. 4.15). As a consequence it is non-zero when only both λx
and λy wavelengths are equal to 2h, which is not the behavior expected (see
Jeanmart and Winckelmans 2007 [186]).

The effectiveness of two-dimensional discrete filters is visible on Figure 4.4.
This figure shows the same simulation as in Figure 4.3, but uses a first-order
two-dimensional discrete filter. The small perturbation on the interface that
were visible in Figure 4.3b are no longer present in Figure 4.4b. More spectac-
ular is that the very nonphysical and asymmetric behavior observable in Figure
4.3d has completely vanished in Figure 4.4d.

Selection of the filter’s order

The performance of the filter improves with increasing orders n. This affects
two parameters: (i) the selectivity of the filter i.e. its capability of altering the
flip-flop node without altering other modes, and (ii) its conservativity i.e. its
capability at preserving the volume of bubbles.

Firstly, Figure 4.5 shows the gain of one-dimensional filters against each
individual mode’s wavenumber, as given by the equation 4.15. This is shown
for different one-dimensional discrete filters of orders n ranging from 1 to 5. It
can be seen that all five schemes filter-out completely the flip flop mode (gain
of zero at kc h = π), but higher order filters are more selective in the sense that
they damp less the lower frequency modes. Note however, that the width of
the stencil increases linearly with the order n of the filter. Indeed the stencil
covers 2n+ 1 nodes.

Eventually, the volume-preserving properties of the filters can be appreci-
ated on Figure 4.6. The later shows three bubbles (subfigures (b) to (d)) sub-
jected to two-dimensional filters of various orders, and whose shape and volume

64 Chapter 4. Computing the phase- and interface-dependent terms

0.000 0.785 1.571 2.356 3.142
k h

0.00

0.25

0.50

0.75

1.00

G
a
in

Figure 4.5: Gain profiles of discrete two-dimensional filters depending on their
order n. The solid line () corresponds to the first order (n = 1) filter,
the finely dotted line () is the fifth order (n = 5) filter and the lines in
between correspond to the second, third and fourth order filters.

−0.5 0.0 0.5
−0.5

0.0

0.5

(a) No filtering

−0.5 0.0 0.5
−0.5

0.0

0.5

(b) 2D filter,
1st order

−0.5 0.0 0.5
−0.5

0.0

0.5

(c) 2D filter,
2nd order

−0.5 0.0 0.5
−0.5

0.0

0.5

(d) 2D filter,
3rd order

Figure 4.6: Volume preservation of two-dimensional filtering (Eq. 4.16) shown
on a circular bubble originally of diameter 0.51.

can be compared to a simulation performed without filtering (Fig. 4.6a). Those
bubbles correspond to a snapshot of the second rising bubble benchmark (see
section 6.9) at a time of t = 0.1, where a filtering operation has been per-
formed once at each time step. It appears clearly that the first order filter does
not perform well enough (Fig. 4.6b) whereas the second (Fig. 4.6c) and third
(Fig. 4.6d) order filters are satisfactory.

In our case a good compromise between the filter’s order, which impacts
the selectiveness and conservativity of the scheme, and the stencil’s width is to
use a third-order discrete filter.

Tangential discrete filters

Unfortunately two-dimensional filters affects the level set field in the normal
direction, which generates nonphysical bubble shapes. This is visible on Figure
6.7b which shows the same simulation with different filtering schemes. The
simulation considered is the rising bubble B benchmark (see section 6.9) where
the surface tension coefficient has been set to zero. The first subfigure shows
a simulation without filtering, the second uses a two-dimensional third order
filter, and the third employs a tangential variant of the same filter that will

1To be more accurate: it is a rising bubble B (see section 6.9) simulation at t = 0.1.

4.1. Surface tension term 65

be developed in the present section. As can be seen in the second subfigure
(Fig. 6.7b) the simulation filtered with the incorrect scheme yields very non-
physical phenomena that corrupts the results.

A close-up of the formation of those “trenches” is shown in Section 6.6.3.
This phenomenon is caused by the filtering in the normal direction. Instead
the filtering can be applied exclusively in the tangential direction. By analogy
with the one-dimensional case (Eq. 4.12) (Eq. 4.13) (Eq. 4.14), the tangential
filtering Lt,n(·) is performed as

qi,j,filtered ← Lt,n(q) (4.18a)
Lt,n(q) := qi,j − L n

t (q) (4.18b)

Lt(q) := − 1

4

∂2φ

∂t2
(4.18c)

where the second order derivative on level set can either be computed in the
“direct” form

∂2φ

∂t2
= t̂̂t̂tT · ∇ (∇φ) · t̂̂t̂t (4.19)

or in the divergence form

∂2φ

∂t2
= ∇·

(
(III − n̂̂n̂n⊗ n̂̂n̂n)∇φ

)
(4.20)

Numerically, we hence have three possible implementations of the tangential
filtering. The first implementation is the direct form (Eq. 4.21) where both
∇(∇φ) and n̂̂n̂n are expressed at cell centers.

∂2φ

∂t2
= n̂̂n̂nTi,j · (∇ (∇φ))i,j · n̂̂n̂ni,j (4.21)

The second and third implementations use the divergence form (Eq. 4.20) where
both ∇φ and n̂̂n̂n are expressed at cell faces

∂2φ

∂t2
=

1

h

((
(III − n̂̂n̂n⊗ n̂̂n̂n)i+ 1

2 ,j
∇φi+ 1

2 ,j

)

−
(
(III − n̂̂n̂n⊗ n̂̂n̂n)i− 1

2 ,j
∇φi− 1

2 ,j

))
+ [...] (4.22a)

n̂̂n̂ni− 1
2 ,j
←

∇φi− 1
2 ,j

‖∇φi− 1
2 ,j
‖ (4.22b)

and where ∇φi− 1
2 ,j

is either discretized using a scheme on the cell faces (second
implementation)

∇φi− 1
2 ,j
←

{
1
hx

(φi,j − φi−1,j)
1

2hy
(
φi,j+1+φi−1,j+1

2 − φi,j−1+φi−1,j−1

2)

}
(4.23)

or by averaging the normals computed in the center both neighbouring cells
(third implementation)

∇φi− 1
2 ,j
←

1
2

(
φi+1,j−φi−1,j

2hx
+

φi,j−φi−2,j

2hx

)

1
2 (

φi,j+1−φi,j−1

2hy
+

φi−1,j+1−φi−1,j−1

2hy
)

 (4.24)

66 Chapter 4. Computing the phase- and interface-dependent terms

(a) Partially expanded form (Eq. 4.6) (b) Fully expanded form (Eq. 4.7)

Figure 4.7: Surface tension term of the vorticity equation on the first rising
bubble case (see section 6.9) computed on the first sub-step of the first time
step. A 128x256 grid was used. The original benchmark’s circular bubble has
been replaced by an ellipse of main radii 0.3 and 0.15.

The correctness of those three implementations is assessed in section 6.6.4.
Eventually, the third-order direct form of the tangential discrete filter is chosen.
It is computed according to Equation 4.21.

4.1.2 Computation of curvature

Empirically, it can be observed that the surface tension term generates very
complex and highly fluctuating vorticity fields, even for simple geometries.

Vorticity fluctuations generated by surface tension term

As an example, Figure 4.7 shows the case of an ellipse-shaped bubble. What
is shown are the surface tension terms computed using both implementations
described in Section 4.1 (i.e. equations 4.6 and 4.7). Those terms were com-
puted from a reinitialized level set field, since there exist no simple analytical
definition of the level set field for an ellipse-shaped bubble. In the case of an
horizontally flattened bubble, the surface tension tends at bringing it back to-
wards a circular shape. This implies a positive vorticity in the top-left and
bottom-right corners, and a negative vorticity in the top-right and bottom-left
corners. At least, that is what is expected.

However, Figure 4.7 shows a succession of dents of intense positive and
negative vorticity that are oriented normally to the interface. Both implemen-
tations (subfigures 4.7a and 4.7b) are about as bad as one another regarding
that point. That being said, on average one can see lighter shades in the top-left
and bottom-right corners, and darker shades in the top-right and bottom-left
corners, as is to be expected. Moreover, running the simulations with a term
that generates such fluctuating fields still yields good results.

Nevertheless one can wonder where those fluctuations come from and whether
they can be prevented.

4.1. Surface tension term 67

Root cause

Plotting the different terms constituting the surface tension term ((Eq. 4.6) or
(Eq. 4.7)) has shown that it is the “signed curvature” component ∇· n̂̂n̂n that is
responsible for those fluctuations. In order to further study this phenomenon
the case of a disk is considered.

As seen previously the signed curvature is defined as the divergence of the
normal vector

κ := ∇· n̂̂n̂n (4.25)

which corresponds to the laplacian of the level set

κ = ∇2φ (4.26)

but in actual simulations it must be computed as

κ ← ∇·
(∇φ
‖∇φ‖

)
(4.27)

to prevent distortions of the level set field to affect the curvature values. In this
section however, only analytical level set fields or level set right after reinitial-
ization will be considered. Therefore, the curvature will be computed as the
laplacian of the level set function (Eq. 4.26), since it is a simpler scheme and
displays the same “vorticity dents” than the more complex normalized scheme
(Eq. 4.27) that is used in actual simulations.

Results are shown in figures 4.8 to 4.11, which are organized as a 4x3 array.
Each of the three columns corresponds to a different case: either (left column)
the analytical level set field is used directly in the computations, or (central
column) a field equal to twice the analytical level set is first reinitialized using
the Hamilton-Jacobi approach (see section 3.2.4), or (rightmost column) the
Fast Marching Method is employed instead. Each line of the array shows a
different type of plot.

Firstly, consider the level set fields in Figure 4.8. They all look very similar,
such that it is impossible to tell the difference between them by the naked eye.
Next, see the curvature fields (evaluated as ∇2φ) computed from those same
fields: the difference is obvious. In the case of the analytical level set field
(Fig. 4.9a), the curvature varies normally to the interface and remains constant
in the tangential direction, as it should be. This yields a very smooth field.
In the case of the Hamilton-Jacobi and of the Fast Marching Method however,
dents have appeared (Fig. 4.9b) (Fig. 4.9c). Those dents are strongest in the
vicinity of the interface. Hence, it is the reinitialization procedure that produces
the dents.

Eventually, whereas the surface tension term of velocity-pressure formula-
tions of Navier-Stokes is proportional the curvature ∇· n̂̂n̂n directly, the one of
the vorticity equation is proportional to its gradient ∇(∇· n̂̂n̂n). The additional
differentiation operation that it requires amplifies the fluctuations. This is
visible in Figure 4.10 where the scale of the fluctuations has one or two or-
ders of magnitude difference between the analytical field (Fig. 4.10a) and the
Hamilton-Jacobi (Fig. 4.10b) and FMM (Fig. 4.10c) reinitialized fields respec-
tively.

68 Chapter 4. Computing the phase- and interface-dependent terms

(a) Analytical (b) After Hamilton-
Jacobi reinitialization

(c) After Fast Marching
Method

Figure 4.8: Level set fields

(a) Analytical (b) After Hamilton-
Jacobi reinitialization

(c) After Fast Marching
Method

Figure 4.9: Curvature fields, computed as ∇2φ

(a) Analytical (b) After Hamilton-
Jacobi reinitialization

(c) After Fast Marching
Method

Figure 4.10: Tangential gradient of curvature, computed as ∇
(
∇2φ

)
× ∇φ
‖∇φ‖

(a) Analytical (b) After Hamilton-
Jacobi reinitialization

(c) After Fast Marching
Method

Figure 4.11: Tangential gradient of curvature, computed from a level set field
filtered with the third order tangential filter of direct form (Eq. 4.21)

4.2. Viscous term 69

Recall that a level set reinitialization procedure propagates correct level set
field values from the interface to the rest of the domain. This implies that across
the interface the advection velocity of the reinitialization equation changes
direction from −n̂̂n̂n in the interior region Ω− to +n̂̂n̂n in the exterior region Ω+.
Numerically, this requires a switching of downwinding direction between both
sides of the interface, as is enforced by the Rouy scheme (Eq. 3.19a) (Eq. 3.19b)
in the case of a Hamilton-Jacobi reinitialization. This is what causes numerical
fluctuations in the second derivative of the level set function. And since the
downwinding scheme is present in both the Hamilton-Jacobi approach and the
Fast Marching Method, both are affected.

It appears that in order to prevent those oscillations from appearing, a
completely new approach to level set reinitialization must be devised that is
not based on an upwinding technique. Such a method has not been investigated
in this thesis.

Additionally, one could wonder whether the tangential filtering that is re-
quired by the surface tension term on collocated grids could help to damp those
fluctuations. Figure 4.11 shows the same gradient of curvature fields ∇(∇· n̂̂n̂n)
than Figure 4.10 except that the level set field, after being reinitialized, have
been filtered using a third-order tangential discrete filter. Unfortunately no
visible improvement is to be observed in comparison to the non filtered case
(Fig. 4.10).

Nevertheless, those fluctuations do not seem to affect the flow significantly
as the surface tension benchmarks still match the reference data well (see sec-
tion 6.8).

4.2 Viscous term

Up to now, the fluid properties of both fluid phases were considered identical.
In this chapter, the handling of two-phase flows with variable fluid properties
is introduced. Several technical solutions exists for that purpose, including the
single-fluid model, the ghost fluid method or the immersed interface method.
In this PhD, a single-fluid model will be used. This choice is motivated mainly
by the simplicity of the method.

4.2.1 Single-fluid model

Within each phase, the fluid properties of the corresponding fluid while near the
interface, one transitions smoothly from the properties of one fluid to thee of
the other. This transition allows to prevent discontinuities that finite difference
methods cannot handle. In this approach the fluid properties (for instance the
mass density ρ or the dynamic viscosity µ) are defined as a convex sum of the
values within both phases

ρ(x) := ρ− (1−Hε(x)) + ρ+Hε(x) (4.28a)
µ(x) := µ− (1−Hε(x)) + µ+Hε(x) (4.28b)

70 Chapter 4. Computing the phase- and interface-dependent terms

Hence the same definition of mass density or viscosity are used in all terms
of the Navier-Stokes equation. As the interface thickness tends to zero, this
model converges to a two-fluid case.

Note that the Brackbill Continuum Surface Force model (see section 4.1)
introduced a surface tension force that embedded a smeared mollifier function
δε that had the shape of a cosine

δε(φ) :=
1

2ε

(
1 + cos

(π
ε
φ
))

(4.29)

and all fluid properties q such as mass density ρ or dynamic viscosity µ are
smeared across the interface using the same Heaviside function Hε(·)

q(φ) := q+Hε(φ) + q− (1−Hε(φ)) (4.30)

the latter being defined as the integral of the mollifier δε

Hε(φ) :=

ˆ φ

−ε
δε(φ) dφ (4.31)

which is
Hε(φ) =

φ

2 ε
+

1

2π
sin
(π
ε
φ
)

+
1

2
(4.32)

within the transition region Γε.

Additionally, the expression of the vorticity equation (Eq. 2.2) is to be sim-
plified. Starting from a momentum equation

Duuu

Dt
= − ∇p

ρ
+ ggg +

1

ρ
∇·τττ (4.33)

and the corresponding vorticity equation

Dω

Dt
= − ∇p

ρ
× ∇ρ

ρ
+ ∇×

(
1

ρ
∇·τττ

)
(4.34)

the momentum equation is injected into the baroclinic term of the vorticity
equation

Dωωω

Dt
=

(
Duuu

Dt
− ggg
)
× ∇ρ

ρ
+

1

ρ
∇×

(
∇·τττ

)
(4.35)

Unfortunately in its present form, the viscous term is unstable. In order to
achieve stability, it is decomposed into a laplacian term plus a sum of other
terms. Of course a simple expansion can be used to achieve that result,

∇×∇·τττ = µ∇2ω + ∇µ×∇2uuu + ∇×
(
(∇uuu+∇uuuT) · ∇µ

)
(4.36)

However a better expression can be obtained by a more sophisticated manip-
ulation. Such a procedure is described by Thirifay’s 2006 PhD thesis [115]
but unfortunately, the demonstration contains a mistake (see Appendix G for

4.2. Viscous term 71

a corrected version of the derivation, and for a list of possible formulations).
The correct expansion for a 2D incompressible flow can be expressed as

∇×∇·τττ = µ∇2ω + 2∇ω · ∇µ − ω∇2µ − 2

3∑

i=1

εipq
∂up
∂xi

∂(∇µ)q
∂xi

(4.37)

or yet still, as an alternative,

∇×∇·τττ = ∇2 (µω) − 2ω∇2µ − 2

3∑

i=1

εipq
∂up
∂xi

∂(∇µ)q
∂xi

(4.38)

The influence of the missing term in Thirifay’s original formulation is discussed
in Section 6.6.5.

72 Chapter 4. Computing the phase- and interface-dependent terms

Chapter 5

High mass-density ratio VPM
method

5.1 Introduction

Simulation of incompressible multiphase flows with large differences in fluid
properties between phases is notoriously difficult because of the steep gradi-
ents they introduce [187]. This is especially true with methods such as finite
differences that require a certain degree of smoothness of the fields. However
several industrial applications require CFD simulations of such flows. Exam-
ples of such applications are argon-stirred ladles in metallurgy [188], pool-type
heavy liquid metal reactors in the nuclear industry [19] or pipe flow in the
petroleum industry [189], amongst others.

5.1.1 Interface modelling methods

One of the most popular methods for multiphase flows is the smeared interface
method [190] in which both phases are considered to belong to one single fluid
whose properties such as dynamic viscosity µ or mass density ρ are functions
of space. More specifically, a mollified Heaviside function Hε(·) is chosen such
that the fluid property values transition smoothly across the interface through
the convex sum

ρ(xxx) = ρ− (1−Hε(φ)) + ρ+Hε(φ) (5.1a)
µ(xxx) = µ− (1−Hε(φ)) + µ+Hε(φ) (5.1b)

where φ is the distance to the interface.
Several other multiphase methods exist including the popular immersed

interface [191] [192] and ghost fluid methods [193] [194]. In comparison to
these methods, the smeared interface method is simpler to implement but not
the fastest to converge. Indeed, in a smeared interface method convergence
is achieved by shrinking the thickness of the smeared interface to zero, but
at the same time the number of nodes across the interface must be increased

73

74 Chapter 5. High mass-density ratio VPM method

(for finite difference methods) so that the discretisation errors also converge.
This “double convergence” result in a slower global convergence. Additionally,
compared to a sharp interface method such as the immersed interface method,
the region of the flow affected by the smeared interface in the vincinity of the
interface is much greater.

Nevertheless, immersed interface and ghost fluid methods introduce addi-
tional complexity because they alter the scheme at the interface. Additionally,
in the framework of vortex methods, both also require significant changes in
the Poisson solver used to convert vorticity into velocity [118].

All in all the smeared interface method is still relevant thanks to its sim-
plicity, and smeared interface methods that can handle relatively large fluid
properties differences remain an important tool for numerical scientists.

5.1.2 Smeared interface vortex methods
Smeared interface vortex methods, which combine both the velocity-vorticity
formulation and smeared interface methods, solve the vorticity equation

Dω

Dt
= −∇p

ρ
× ∇ρ

ρ︸ ︷︷ ︸
baroclinic term

+ ∇×
(

1

ρ
∇·τττ

)
+ ∇×FFF s (5.2)

over the whole domain instead of the momentum equation

Duuu

Dt
= ggg − ∇p

ρ
+

1

ρ
∇·τττ + FFF s (5.3)

used in velocity-pressure formulations. Here FFF s represents the source terms of
the momentum equation, whatever they might be, for instance surface tension.
In the vorticity equation (Eq. 5.2), the buoyancy effects are not repersented
directly by a distinct term in the equation, but are handled by the baroclinic
term.

The pressure gradient embedded in the baroclinic term of the vorticity
equation (Eq. 5.2) can be evaluated in two ways. The most straightforward
solution is to inject the momentum equation (Eq. 5.3) on velocity in place of
the pressure term

Dω

Dt
=

(
Duuu

Dt
− ggg
)
× ∇ρ

ρ
+

1

ρ
∇× (∇·τττ) + ∇×FFF s . (5.4)

The second approach consists in taking the divergence of the momentum equa-
tion (Eq. 5.3) in order to transform it into an elliptic equation on pressure

Find p such that

∇· ∇pρ =
D

Dt
(∇·uuu)

︸ ︷︷ ︸
=0

+ ∇·
(

1
ρ ∇·τττ

)
+ ∇·FFF s on Ω

∇p · n̂̂n̂n = 0 on ∂Ω

(5.5)
then inject that definition of pressure into the vorticity equation (Eq. 5.2).
This approach is used in particular in Thirifay’s 2002 article [114], or in the

5.2. One-dimensional model of the instability 75

Encyclopedy of Computational Mechanics [46]. However, solving an elliptic
problem with non-constant coefficients is very costly since it requires the use of
a geometric or algebraic solver. Moreover, in the elliptic approach, terms (for
instance the viscous term) are present once in the pressure equation (Eq. 5.5)
and once in the vorticity equation (Eq. 5.2). Beyond the clumsiness of the
formulation, one can wonder how both terms interact with each other. For that
reason, the parabolic approach (Eq. 5.4) appears as a much more acceptable
solution.

5.1.3 Buoyancy numerical instability

However, our numerical investigations have discovered evidence of an instability
on buoyancy for the parabolic approach (Eq. 5.4). This instability is triggered
when the ratio of mass densities between both phases ρ+

ρ−
exceeds a critical

value. That critical value depends on the time integrator that is used but is
invariant on the time step value, unlike most numerical instabilities encoun-
tered in CFD. It will sometimes be referred to as the “buoyancy instability”
for convenience, although it has no connection with physical buoyancy insta-
bilities encountered in e.g. geophysical [195] or astrophysical flows [196]. The
instability considered in the present work is purely numerical, not physical.

In this chapter, a simplified 1D model is devised whose outputs will be
shown to be consistent with those of a 2D Vortex Particle-Mesh method (also
referred to in the literature as a Vortex-in-Cell method). Then an under-
relaxation solution to the stability problem is proposed and its behavior is
characterized. Following that, it will be shown that a classic harmonic analysis
of the instability is not capable of capturing it accurately enough. Eventually,
the results of this study will be presented in a practical perspective and an
example of simulation will be shown. Additional properties of the instability,
such as its sensitivity to simulation parameters, are presented.

5.2 One-dimensional model of the instability

To better capture and understand the dynamics of the instability, it is critical
to conceive a model as simple as possible that exhibits the same numerical
behavior. The current section simplifies the buoyancy problem in a number of
ways until such a simple model is obtained.

5.2.1 General view on the problem

The stability issue arises from the material derivative embedded in the baro-
clinic term (Eq. 5.4). Indeed, the parabolic form of the vorticity equation
(Eq. 5.4) entails a strong coupling: the purpose of this equation is to update
the vorticity field in time, vorticity being a way to express the velocity infor-
mation. In the same time however, the time derivative of velocity is used as an
argument to the equation’s Right Hand Side. In other words, the same velocity
information that is to be obtained from the vorticity equation is also the one

76 Chapter 5. High mass-density ratio VPM method

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3
D
v

D
t

(a) ρ+/ρ− = 5
Converges without over-

shoots.

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

(b) ρ+/ρ− = 20
Converges but over-

shoots Dv
Dt

= 1.

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

(c) ρ+/ρ− = 100
Diverges.

Figure 5.1: Dv
Dt profiles along a line cutting an elongated drop (Fig. 5.2b) hor-

izontally in its center. Shown at time step 0 (), 1 (), 2
(), 3 (), 4 () and 5 () for an Euler-Explicit time
integrator. Gravity acceleration ggg is set to one ê̂êey.

that has been inputted to it. In practice, the numerical method guesses the
definition of the material derivative Duuu

Dt from previous velocity values.
Consider now the side of a drop of heavier fluid surrounded by a lighter

fluid (Fig. 5.2b). Because of the presence of the other phase, the drop’s fall is
slowed down by buoyancy effects. Hence it should fall at an acceleration lower
or equal to free fall acceleration ggg. On the other hand, the surrounding fluid
can rise at arbitrarily high accelerations, within added mass effects. Numeri-
cally however, the parabolic form of the equation (Eq. 5.4) performs the first
time step by guessing a material acceleration Duuu

Dt equal to 000. Time step after
time step, the guess for Duuu

Dt improves until it converges to the physical mate-
rial acceleration field. This works well with low mass density ratios for which
convergence is reached within a few time steps (Fig. 5.1a). Note that this work
considers gravity acceleration vectors ggg pointed upwards for simplicity of the
equations, which means that the “falling” phase is the one moving upwards.
With increasing mass density ratios, the convergence becomes slower. Also,
beyond a certain ρ+

ρ−
ratio it achieves convergence after over-shooting an accel-

eration of ggg (Fig. 5.1b). In other words, locally and during a few time steps,
the falling drop falls faster than free fall, which is nonphysical. Eventually, for
even higher mass density ratios, the overshoots are great enough for the simu-
lation to become unstable (Fig. 5.1c). The plots shown in Figure 5.1 have been
obtained with the one-dimensional model that will be derived in the present
section and use the non-dimensionalizing presented in Section 5.2.4. Before
that model can be derived however, the problem must first be simplified.

5.2.2 Simplified governing equations

From the full vorticity equation (Eq. 5.2) and momentum equation (Eq. 5.3),
only the terms related to Archimedes principle are responsible for the buoyancy
instability: the baroclinic term of the vorticity equation, and the pressure and
gravity terms of the momentum equation (Eq. 5.3). The other terms of the
equation are either of no influence on this phenomenon or oppose it: surface

5.2. One-dimensional model of the instability 77

tension works in the normal direction instead of the tangential direction and
viscosity tends to reduce acceleration. To study this numerical phenomenon,
we work on the simplest model possible. Therefore, the vorticity equation is
reduced to

Dω

Dt
=

(
Duuu

Dt
− ggg
)
× ∇ρ

ρ
(5.6a)

ω(t = 0) = 0 (5.6b)
uuu(t = 0) = 000 (5.6c)

5.2.3 Simplified geometry

Any shape of bubble or drop is potentially subject to the buoyancy instability.
For studying the instability however, the interface’s shape should be as simple
as possible. This study considers a very elongated drop surrounded by a heavier
fluid (Fig. 5.2b). More specifically it studies the velocity profile along a line
cutting the drop horizontally in its center. Such a drop shape has several
advantages. Firstly, note that the baroclinic term generates most vorticity on
the sides of the drop, not on its bottom or top. Hence the development of the
instability should be observed on the drop’s sides. Additionally, a column of
fluid (Fig. 5.2a) cannot be used because Archimedes principle only applies to a
fully immersed body. For instance, if a solid cylinder is immersed into water
such that its bottom touches the bottom of the water vessel in a sealed way,
then no buoyancy force will take place. For that reason the infinite column
of fluid is not subject to buoyancy and hence cannot be used. Eventually at
middle height of a very tall drop (Fig. 5.2b), the geometry becomes very similar
to that of a column of fluid (Fig. 5.2a) and some assumptions can be made : that
the horizontal component of velocity is zero u = 0 and, as a consequence to the
incompressibility condition ∇·uuu = 0, that the vertical component of velocity is
constant in the vertical direction i.e. tangentially to the drop’s interface. This
yields

ω =
∂v

∂x
(5.7)

and
Dv

Dt
=
∂v

∂t
. (5.8)

The problem’s governing equation (Eq. 5.6a) hence reduces to the one-dimensional
ODE

∂

∂t

(
∂v

∂x

)
=

(
(ggg · ê̂êey)− Dv

Dt

)
∂ ln(ρ)

∂x
(5.9)

where v is a function of merely the horizontal coordinate x and time t, and ggg
is the gravity acceleration.

Furthermore, the previous equation which embeds vorticity ω = ∂v
∂x (Eq. 5.9)

can be transformed into an equation on velocity only by applying the S(·)

78 Chapter 5. High mass-density ratio VPM method

(a) Infinite column
of fluid:
Not subjected to
buoyancy

(b) Very tall drop:
Is affected by

buoyancy

(c) Numerical
2D
validation simu-
lation

(d) Zoom-in on
transition region
of a very tall
drop

Figure 5.2: Case of study for buoyancy

integral operator

∂v

∂t
= S

((
(ggg · ê̂êey)− Dv

Dt

)
∂ ln(ρ)

∂x

)
(5.10)

which corresponds to the operator transforming vorticity ω into velocity v
through a Biot-Savart law. In the case of a closed box spanning from xleft to
xright the operator S (·) is defined as

v = S
(
∂v

∂x

)
:=

ˆ x

x=xleft

∂v

∂x
dx − 1

xright − xleft

ˆ xright

xleft

ˆ x

xleft

∂v

∂x
(x) dx dx

(5.11)
In other words, S (·) performs the Biot-Savart integral offsetted such that the
average vertical velocity across the domain is zero. This offset derives from the
fact that the flow takes place within a closed box. Eventually, this closed box
is chosen to have free-slip walls.

5.2.4 Non-dimensionalization of problem

This problem is non-dimensionalized as

∂v∗

∂t∗
= S

((
1− Dv∗

Dt∗

)
∂ ln(ρ)

∂x∗

)
(5.12)

where space is non-dimensionalized relative to the interface mollification length
ε and time is non-dimensionalized relative to the gravity acceleration

x∗ =
x

ε
, t∗ =

t√
ε

‖g‖

(5.13)

5.2. One-dimensional model of the instability 79

Hence the new system of coordinates x∗ is such that the transition region Γε of
the smeared interface method spans from x∗ = −1/2 to x∗ = +1/2 (Fig. 5.2d).
The transition region Γε separates the deep interior region Ω−ε from the deep
exterior region Ω+

ε

x∗ < −1/2 ⇔ xxx ∈ Ω−ε , (5.14a)
−1/2 < x∗ < +1/2 ⇔ xxx ∈ Γε. (5.14b)

+1/2 < x∗ ⇔ xxx ∈ Ω+
ε , (5.14c)

As a result of this non-dimensionalization, the non-dimensionalized gravity
acceleration is +ê̂êey and hence the “falling” phase actually moves “upwards”.
In the following, the non-dimensionalized quantities such as x∗ and t∗ will be
written without the star (e.g. x, t, etc) for the sake of simplicity.

5.2.5 Discretization of the material derivative
The Right Hand Side of both the original vorticity equation (Eq. 5.4) and the 1D
model’s governing equation (Eq. 5.12) embed a material derivative of velocity
Dv
Dt that solvers have to evaluate. To do so it is approximated in both cases to
the first order using the operator Dt[v(xxx, t)](t2, t1) defined as

Dtv(t2, t1) :=
v(t2)− v(t1)

t2 − t1
(5.15)

In practice, within time step n (the time step that yields vn+1 from vn) one
would use

Dtv(t, tn−1) =
v(t)− vn−1

t− tn−1
. (5.16)

For convenience in later use, we also define Dtv
n as

Dtv
n := Dtv(tn, tn−1) (5.17)

Note that, for time integrators with substeps, we always use the same vn−1

value for all substeps.

For multi-step time integrators, the gap in time between the time tn,m at
current substep m and tn−1 might be large (up to almost two time steps ht).
Therefore, one could be tempted to discretize the material derivative using the
time tn,(m−1) of previous substep m− 1 instead. This would yield

Dtv =
v(tn,m)− v(tn,(m−1))

tn,m − tn,(m−1)
(5.18)

where vn,m denotes the mth substep of time step n. However, using that form
would not be wise. Firstly because the successive substeps of Runge-Kutta time
integrators (for instance) are placed at arbitrary locations of the (v, t) space,
and hence two consecutive (v, t) points might have a Dtv slope very different
from the actual material acceleration Dv

Dt . This might generate instability.
More formally, that discretization of the material acceleration (Eq. 5.18) does

80 Chapter 5. High mass-density ratio VPM method

not allow the governing equation (Eq. 5.12) to be written in the form of an
equation whose right-hand side operator Rhs(·) takes only two arguments

∂v

∂t
= Rhs(v, t) (5.19)

Yet this is the canonical form over which time integrators’ stability and con-
vergence properties are typically asserted. By using such a definition of the
material derivative (Eq. 5.18) those properties can hence no longer be guaran-
teed.

Note also that the time argument t of the right-hand side operator Rhs(·)
is indeed used in our case because of the Dt operator (Eq. 5.16), contrary to
most situations encountered in CFD. This has important repercussions since
most studies on Total Variation Diminishing (TVD) [197] or Strong Stability
Preserving (SSP) [198] [199] [200] time integration schemes consider a unary
right-hand side operator

∂v

∂t
= Rhs(v) (5.20)

Hence the results of those studies cannot be used here. The TVD, SSP or Total
Variation Bounded (TVB) property of our scheme is beyond the scope of this
study.

To summarize, the material acceleration Dv
Dt will be approximated using the

first order scheme presented in equation 5.16 which yields

∂v

∂t
= S

((
1−Dtv

(
t, tn−1

)) ∂ ln(ρ)

∂x

)
(5.21)

Note that there is one different ODE per time step, since the time tn−1 changes
from a time step to the other. Eventually, the initial material acceleration Dtv

0

cannot be evaluated because we lack the velocity vn−1 and therefore it will be
set to zero for the first time step Dtv

0 = 0. Solving the problem hence consists
in time integrating the previous equation, which yields the sequence of material
derivatives (Dtv

n)n∈N

Dtv
0 = 0 (5.22a)

Dtv
n+1 =

1

ht

ˆ tn+1

tn

∂v

∂t
dt (5.22b)

where ∂v
∂t is determined for each time step by the ODE (Eq. 5.21). Studying the

buoyancy instability hence consists in analyzing the convergence or divergence
of that sequence of functions.

5.2.6 Governing equation on errors

Since it is an instability that is being studied, it would be more natural to work
with an error on material acceleration Dtv

′ than with material acceleration Dtv
itself.

5.2. One-dimensional model of the instability 81

First note that for a given mass density profile ρ(x), there exists a function
Dv
Dt

∞
(x) function such that

Dv

Dt

∞
= S

((
1− Dv

Dt

∞) ∂ ln(ρ)

∂x

)
(5.23)

This function will be called the convergence limit in acceleration since if Dtv(t, tn−1)
converges, then it converges to Dv

Dt

∞. Following this, the error in material ac-
celeration Dv′

Dt is defined analytically as

Dv′

Dt
=

Dv

Dt
− Dv

Dt

∞
(5.24)

which implies the splitting of the approximations to material acceleration

Dtv
′(t, tn−1) = Dtv(t, tn−1) − Dv

Dt

∞
(5.25)

Recall also that due to the geometrical assumptions done in Section 5.2.3, the
material derivative Dv′

Dt is equal to the partial time derivative ∂v′

∂t . This splitting
of the material derivative (Eq. 5.25) yields the governing equation on material
acceleration error

∂v′

∂t
= −S

((
Dtv

′ (t, tn−1
)) ∂ ln(ρ)

∂x

)
(5.26)

which holds true on]tn, tn+1[for every time step n. The sequence of errors in
material acceleration (Dtv

′n)n∈N is hence computed as

Dtv
′ 0 = −Dv

Dt

∞
(5.27a)

Dtv
′ n+1 =

1

ht

ˆ tn+1

tn

∂v′

∂t
dt. (5.27b)

where the integral is evaluated from the ODE (Eq. 5.26). Therefore studying
the stability or instability of the scheme can be done by analyzing the conver-
gence or divergence of the sequence of functions (Dtv

′n)n∈N.

5.2.7 General sequence describing the instability
The generic form of the (Dtv

′n)n∈N sequence shown previously (Eq. 5.27) is not
easy to work with. Instead, we would like to find a definition of it in the form

Dtv
′ 0 = − Dv

Dt

∞
(5.28a)

Dtv
′ n+1 = L (Dtv

′ n) (5.28b)

where L (·) is the operator whose definition must be found. This can be
achieved by evaluating numerically the integral. However, each time integrator
has an L (·) operator of its own.

82 Chapter 5. High mass-density ratio VPM method

As an example, the sequence for the Euler-Explicit time integrator is

Dtv
′ 0 = − Dv′

Dt

∞
(5.29a)

Dtv
′ n+1 = S

(
−Dtv

′ n ∂ ln(ρ)

∂x

)
. (5.29b)

whereas the midpoint Runge-Kutta 2 time integrator has

Dtv
′ 0 = − Dv′

Dt

∞
(5.30a)

Dtv
′ n+1 = − 2

3
S
(
Dtv

′ n ∂ ln(ρ)

∂x

)
+

1

3
S
(
Dtv

′ n ∂ ln(ρ)

∂x

)
(5.30b)

In the general case, for any m-stage Runge-Kutta time integrator, or more
generally any time integrator that can be written in the form

∂v

∂t
= Rhs(v, t) (5.31a)

vn+1 = vn + ht

m∑

k1=1

bk1
Rhsk1

(5.31b)

Rhsk = Rhs

(
tn + ck ht , v

n + ht

k−1∑

k′=1

akk′ Rhsk′

)
, ∀k (5.31c)

which corresponds to a Butcher table of the form shown in Table 5.1, the
recursion law of its sequence is defined as

Dtv
′ n+1 =

m∑

l=1

dl I
l (Dtv

′ n) (5.32a)

dl :=

m∑

k1=1

k1−1∑

k2=1

· · ·
kl−1−1∑

kl=1

bk1
ak1k2

· · · akl−1kl

(1 + ck1
)(1 + ck2

) · · · (1 + ckl)
(5.32b)

I (Dtv
′ n) := − S

(
Dtv

′ n ∂ ln(x)

∂x

)
(5.32c)

To summarize, the sequence of error in material acceleration (Dtv
′ n)n∈N for

any given time integrator consists of the initial sequence element Dtv
′ 0 = Dv

Dt

∞

followed by the recursion rule Dtv
′ n+1 = L (Dtv

′ n) where the L (·) operator
of the time integrator is obtained from (Eq. 5.32). Practical examples of such
sequences are given for some time integrators in Appendix D.

5.2.8 Results with 1D model
The previous section showed how to obtain a simple sequence that could capture
the numerics of the buoyancy instability. From this knowledge, the current
section computes the terms of the sequences corresponding to the Euler-Explicit

5.2. One-dimensional model of the instability 83

Table 5.1: Numbering convention for Butcher table’s coefficients

c1
c2 a21

c3 a31 a32

...
...

. . .
cm am1 am2 · · · am,m−1

b1 b2 · · · bm−1 bm

and Runge-Kutta 3 time integrators defined in Appendix D. The numerical
behavior of those numerical instabilities is studied.

In this section and more generally in the rest of the chapter (unless noted
otherwise), the mass density of the left phase ρ− will be fixed at 1 and the
mass density will be computed as the integral of a cosine, which in the non-
dimensionalized space is

δε(x) := 1 + cos(2π x) (5.33a)

Hε(x) :=

ˆ x

x=−1/2

δε(x)dx =
1

2
+ x +

1

2π
sin(2π x) (5.33b)

ρ(x) := ρ− (1−Hε(x)) + ρ+Hε(x) (5.33c)

Figures 5.3 and 5.4 show respectively an example of a stable and unstable
case. Both have been obtained for an Euler-Explicit time integrator, only the
mass density of the drop (right-most phase) ρ+ changes between the two figures.
Indeed, the stable case uses ρ+ = 30 whereas the unstable case uses ρ+ = 50.
In the stable case, the material acceleration converges to Dv

Dt

∞ (Fig. 5.3a) and
the error in material acceleration to zero (Fig. 5.3b). On the other hand, for the
unstable case, both the material acceleration Dtvand the error in acceleration
Dtv

′ diverge (Fig. 5.4a) (Fig. 5.4b). In particular, one can note that the material
acceleration Dtv at time step 20 exceeds 1 which means that the drop (located
on the right side of the domain) “falls” faster than free fall (Fig. 5.4a) (recall
that the gravity acceleration ggg has been non-dimensionalized to +ê̂êey).

To appreciate the rate of convergence or divergence of a case of study, one
needs to choose an error norm E and plot its evolution as the time step number
n increases. The error norm E used in this paper is defined as the Euclidian
norm of the error in material acceleration L2(Dtv

′) normalized relative to the
first term of the sequence

En :=
L2 (Dtv

′n)

L2 (Dtv′0)
(5.34)

Figure 5.5 shows the influence of the mass density ρ+ on the instability
growth rate for five different ρ+ values. It shows two plots, each corresponding
to a distinct time integrator (Euler-Explicit (see section D.1) or Runge-Kutta
3 (see section D.4)). Each plot displays five curves, one for each ρ+ value.

84 Chapter 5. High mass-density ratio VPM method

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

n

(a) Material acceleration (Dtv
n)n∈N

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

′

(b) Error on material acceleration
(Dtv

′ n)n∈N

Figure 5.3: Example of a stable problem: Euler-Explicit with ρ+/ρ− = 30.
Apart from Dv

Dt

∞ (), each curve corresponds to a single time step:
Dtv

0 (), Dtv
4 () , Dtv

8 (), Dtv
12 (),

Dtv
16 (), Dtv

20 ().

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

n

(a) Material acceleration (Dtv
n)n∈N

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

′

(b) Error on material acceleration
(Dtv

′ n)n∈N

Figure 5.4: Example of an unstable problem: Euler-Explicit with ρ+/ρ− = 50.
Same legend as Figure 5.3.

5.2. One-dimensional model of the instability 85

0 50 100 150 200
n

10−4

10−3

10−2

10−1

100

101

102

103

104
E

(a) Euler-Explicit. From the fastest
growing to the fastest descending
curve: ρ+

ρ−
= 80, ρ+

ρ−
= 50, ρ+

ρ−
=

41.568718, ρ+

ρ−
= 35 and ρ+

ρ−
= 30.

0 50 100 150 200
n

10−4

10−3

10−2

10−1

100

101

102

103

104

E
(b) Runge-Kutta 3. From the fastest
growing to the fastest descending
curve: ρ+

ρ−
= 230, ρ+

ρ−
= 180, ρ+

ρ−
=

154.899888, ρ+

ρ−
= 120 and ρ+

ρ−
= 90.

Figure 5.5: Influence of the mass density ratio.

Increasing curves correspond to unstable cases where the material acceleration
diverges to infinity (in absolute value), whereas decreasing curves are stable
cases where material acceleration Dtv converges to Dv

Dt

∞. The generally flat
curve is the marginal stability limit of the scheme. The steepest the curve, the
fastest the divergence or convergence rate of the scheme.

Empirically, it appears that the plots of the error norm (Fig. 5.5) consist
of a periodic signal trapped into a linearly-decaying envelope. As noted in the
previous paragraph, the general slope of the envelope indicates the convergence
or divergence rate of the algorithm. It is therefore important to recover the
slope information from the plot, which is done using a linear regression Ereg(n)
in the sense of least squares in the lin-log space

ln(Ereg) = areg n+ breg (5.35)

where n is the time step number. This corresponds to a geometric sequence(
Enreg

)
n∈N of common ratio eareg

E0
reg = ebreg (5.36a)

En+1
reg = eareg Enreg (5.36b)

This common ratio hence corresponds to the average gain of the buoyancy
instability.

The critical mass density ratio is the ρ+/ρ− value below which the problem
is stable and beyond which it becomes numerically unstable. More specifically
it is defined as the ρ+/ρ− value such that common ratio of the average se-
quence Ereg is equal to 1. The critical mass density ratios for four particular
time integrators are specified in Table (Table 5.3) in the column “1D model”.

86 Chapter 5. High mass-density ratio VPM method

Table 5.2: Parameters for 2D VPM simulations

Geometry Physics Numerics

Slug Rising b. Slug Rising b. Slug Rising bubble
A B A B A B

L 2 1 1 ρ− 1 100 1 ε 1/2 14h 14h
H 16 2 2 ρ+ − 1000 1000 ht 1e−8 adapt. adapt.
R 1 1/2 1/2 ggg · ê̂êey +1 −0.98−0.98 BC left Free-slip Free-slip Free-slip
h 4 − − σ 0 24.5 1.96 BC right Free-slip Free-slip Free-slip

µ− 1 1 0.1 BC bottom Free-slip No-slip No-slip
µ+ 1 10 10 BC top Free-slip No-slip No-slip

Grid 512× 4096 128× 256 256× 512

Additionally to the critical ratio, it is also relevant to study the particular ρ+

ρ−

values for which the instability decays as a rate of (i) halved every 10 time steps
(ii) divided by ten every 10 time steps and (iii) divided by a hundred every 100
time steps.

Several parameters can influence the growth rate of the buoyancy instability,
which are the time-integrator used (see section 5.6.2), the shape of the mass
density profile (see section 5.6.3) and the mass density values within each phase.
A sensitivity analysis of the simulation parameters is conducted in Section 5.6.
In particular, it will be shown in Section 5.6.3 that ρ+

ρ−
is a good measure of

how far from the critical stability regime one is located.

5.3 Comparison of 1D model against 2D simula-
tions

The analysis of the 1D model’s stability or instability done in the previous sec-
tion is interesting. However it remains useless unless its behavior is shown to be
consistent with the one of a 2D numerical solver. Hence this section compares
the outputs of a 1D model against those of a 2D Vortex Particle-Mesh solver
(also referred to in the literature as a Vortex-in-Cell solver). Note however,
that the 1D model is meant to be useful for any vortex method embedding a
smeared interface Method. The VPM solver is hence merely one example of
such solvers.

The 2D VPM solver uses the parameters presented in Table 5.2 and the
initial location of the fluid interface is shown in Figure 5.2c. The comparison
is performed both for a one stage integrator (Euler-Explicit time integrator
(see section D.1)) and for a multiple stage integrator (Runge-Kutta 3 time
integrator (see section D.4)).

5.3.1 Comparison of material acceleration Dtv profiles

Firstly, both 1D model and 2D simulation must predict similar material accel-
eration profiles Dtv. However, the 1D model works with the error in material

5.3. Comparison of 1D model against 2D simulations 87

acceleration Dtv
′ instead. Hence it must be converted into a material acceler-

ation Dtv through
Dtv

n = Dtv
′ n −Dtv

′ 0 (5.37)

Note that the initial element Dtv
′ 0 is defined (Eq. 5.28a) as −DvDt

∞.
Figures 5.6 and 5.7 compare the Dtv computed by the 2D VPM solver (Sub-

figure a) to the one calculated by the 1D model (Subfigure b) in the case of an
Euler-Explicit and Runge-Kutta 3 time integrator respectively. Qualitatively,
the agreement is good between both solvers. Moreover, for a better quantitative
measurement, Figure 5.8 plots the difference of material acceleration between
1D model and VPM solver Dtv

n|1D − Dtv
n|2D in those two cases. As can be

seen, outside from the regions with high gradients, the difference is an order of
magnitude below the one of the raw plots (Fig. 5.6) (Fig. 5.7) which indicates
a good agreement.

5.3.2 Comparison of convergence rates of error norm E

Then, the convergence behavior of the error on material acceleration (Dtv
′n)n∈N

sequences is compared between the 1D model and the 2D VPM solver. For
unstable or non-converging problems, the error in material acceleration is com-
puted by subtracting the analytical material acceleration Dv

Dt

∞

Dtv
′ n = Dtv

n − Dv

Dt

∞
(5.38)

where Dv
Dt

∞ is the analytical solution of equation 5.23. For converging solutions
however, the VPM 2D solver will not have its material acceleration converge
to Dv

Dt

∞ exactly but to a slightly different function because of numerical errors.
Therefore, in stable cases the error in acceleration will be computed as

Dtv
′ n = Dtv

n −Dtv
500 (5.39)

In other words, it is assumed that the acceleration at time step 500 corresponds
to the numerical convergence limit of the material acceleration Dtv. Since the
largest time step number that will be considered is 200, this approximation is
reasonable. Now that a procedure has been established to obtain the error in
acceleration Dtv

′ in both the 2D simulation and 1D model, the error norm can
be computed according to its definition shown in equation 5.34.

Figure 5.9 shows plots of the error norm En against the number of the time
step number n. Hence if the error norm decreases with n, then the problem is
stable and the (Dtv

n)n∈N converges to Dv
Dt

∞. On the other hand, if the error
norm En increases, then the problem is unstable and the sequence (Dtv

n)n∈N
diverges. Figures 5.9a to 5.9f show a very good agreement in the instability
decay rates between 1D model and 2D VPM solver for converging or marginally
stable cases. This is even more striking considering that the Euler-Explicit
and Runge-Kutta 3 time integrators have very different definitions but are
both captured consistently by both 1D and 2D calculations. Note that the
1D curves decay linearly whereas the 2D simulations first descend at a similar
rate but then flatten. This is because the 2D simulation works with material

88 Chapter 5. High mass-density ratio VPM method

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

(a) Computed by 2D VPM solver

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

(b) Predicted by 1D model

Figure 5.6: Comparison of material accelerations between 2D VPM solver
and 1D model: Euler-Explicit with ρ+

ρ−
= 50. Each curve corresponds to

a single time step: Dtv
0 (), Dtv

1 () , Dtv
2 (),

Dtv
3 (), Dtv

4 (), Dtv
5 ().

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

(a) Computed by 2D VPM solver

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

(b) Predicted by 1D model

Figure 5.7: Comparison of material accelerations between 2D VPM solver and
1D model: Runge-Kutta 3 with ρ+

ρ−
= 180. Same legend as (Fig. 5.6)

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv
| m

od
el
−
D

tv
| V

P
M

(a) EE, ρ+

ρ−
= 50

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv
| m

od
el
−
D

tv
| V

P
M

(b) RK3, ρ+

ρ−
= 180

Figure 5.8: Error between 1D model and 2D VPM solver. Same legend as
(Fig. 5.6)

5.3. Comparison of 1D model against 2D simulations 89

0 50 100 150 200
10−4

10−3

10−2

10−1

100
E

(a) EE, ρ+

ρ−
= 30

0 50 100 150 200
10−4

10−3

10−2

10−1

100

E

(b) RK3, ρ+

ρ−
= 90

0 50 100 150 200
10−4

10−3

10−2

10−1

100

E

(c) EE, ρ+

ρ−
= 35

0 50 100 150 200
10−4

10−3

10−2

10−1

100

E

(d) RK3, ρ+

ρ−
= 120

0 50 100 150 200
10−2

10−1

100

101

102

E

(e) EE, ρ+

ρ−
= 41.568718

0 50 100 150 200
10−2

10−1

100

101

102

E

(f) RK3, ρ+

ρ−
= 154.899888

0 50 100 150 200

100

101

102

103

104

E

(g) EE, ρ+

ρ−
= 50

0 50 100 150 200

100

101

102

103

104

E

(h) RK3, ρ+

ρ−
= 180

0 50 100 150 200
n

100

101

102

103

104

E

(i) EE, ρ+

ρ−
= 80

0 50 100 150 200
n

100

101

102

103

104

E

(j) RK3, ρ+

ρ−
= 230

Figure 5.9: Convergence rates without relaxation (α = 1)

90 Chapter 5. High mass-density ratio VPM method

accelerations Dtv whereas the 1D model works with errors on acceleration Dtv
′.

Indeed, numerically, the calculations are performed using a double precision
floating type which provides a finite number of decimals for the mantissa. When
performing calculations on material acceleration Dtv, the error component of
each Dtv has less and less available decimals to work with as it gets smaller.
On the other hand by working with the error Dtv

′ directly, the 1D model is not
affected by this phenomenon: no matter how small the error, the same number
of significant decimals can always be stored in memory, until the exponent
approaches the floating type’s exponent limit (10−307 for IEEE 754 double
precision).

For diverging cases, the behavior of the 1D model seems somewhat differ-
ent from the one of the 2D solver. Firstly it appears as if the VPM methods
prevents the instability growth rate to exceed a maximum limit (Fig. 5.9g)
(Fig. 5.9i) (Fig. 5.9j). Secondly, when using the Runge-Kutta 3 integrator, the
VPM solver has a range of mass density ratios between 155 and 180 for which
the solver is converging extremely slowly. Nevertheless, parameters used to con-
figure 2D simulations should be such that the calculations are strongly stable.
Hence the fact that there are differences in the instability growth rates between
1D model and 2D simulation in the unstable or marginally stable cases is not
truly problematic. On a different subject, note that the offset at the origin of
curves may sometimes be different (Fig. 5.9h), but that translates a difference
in the first few time steps and hence does not play a meaningful role in the
instability. Indeed what is of interest in the plots of Figure 5.9 is the general
slope of the curves, not the offset at the origin.

5.3.3 Comparison of critical mass density ratio ρ+/ρ− val-
ues

Eventually, Table 5.3 shows the critical mass density ratios ρ+/ρ− for both the
1D model and the 2D solver. Since it is difficult to find the exact critical ratio
in the case of the 2D solver, the table shows the highest stable ratios below
which simulations are stable and the lowest ratio beyond which simulations
become unstable. The critical ratio in the case of the 2D solver hence lies in
between those two values. On the other hand, the critical ratios are obtained
in the 1D model with a relative tolerance of 5e−9.

One can observe a good agreement between the critical ratios of the 1D
model and the 2D VPM solver, with the latter being consistently slightly more
stable than the 1D model. The difference is greatest in the case of the RK3 time
integrator, but the simulations between 154 and 175 are actually marginally
stable, as was noted in the previous paragraph and is visible on figures 5.9f and
5.9h. Hence in practice, 2D simulations start being significantly converging
below the 154 value predicted by the 1D model.

5.3.4 Summary
The 1D model behaves consistently with the 2D simulations it is designed
to emulate. Hence the 1D model can be used to predict the behavior of 2D
simulations and in particular determine their stability regime. It is worth

5.4. Achieving stability through under-relaxation 91

Table 5.3: Comparison of critical ρ+/ρ− ratios between the 1D model and a 2D
VPM solver for four time integrators at ρ− = 1 and without relaxation α = 1

Time integrator 2D VPM simulation 1D modelHighest stable Lowest unstable
Euler-Explicit 40 42 41.57
RK2 Other 77 82 77.82

RK2 Midpoint 85 90 84.47
Runge-Kutta 3 175 185 154.9

noting that a 2D simulation performed with a different solver (for instance a
spectral solver) might have yielded slightly different results than the ones the
VPM solver gave. Hence what has been done here is not truly a validation
of the 1D model but rather an assertion of the consistency of the 1D model’s
outputs with those of a 2D solver.

5.4 Achieving stability through under-relaxation
In the previous sections, both the 1D model and the 2D simulations it emu-
lates have been shown to diverge for large mass density ratios. The present
section assesses an under-relaxation solution to allow for unstable simulations
to become stable.

5.4.1 Ideal under-relaxation
Any given sequence (q)n∈N defined as

qn+1 = L (qn) (5.40)

where L can be any operator, can be under-relaxed by a relaxation factor α

qn+1 = αL (qn) + (1− α) qn. (5.41)

Under-relaxation tampers the intensity of the oscillatory behavior of a sequence,
and by doing so it can make a divergent sequence become convergent. On the
other hand, it damps all value changes in an undiscriminating way, including
those due to physical phenomena. In our case however, the acceleration Dv/Dt
varies fairly slowly in time and hence most fluctuations at high mass density
ratios are caused by the buoyancy instability. Therefore, under-relaxation ap-
pears as an acceptable solution. This will be assessed in Section 6.6.6.

In particular, let us consider a geometric sequence (qn)n∈N of common ratio
−g

qn+1 = −g qn (5.42)

where g is a positive number. It has a gain of g which must be less than one
for the sequence to converge. On the other hand, its under-relaxed variant has
a gain gα of

gα = 1− α (1 + g). (5.43)

92 Chapter 5. High mass-density ratio VPM method

which can be brought below one no matter the original gain value g. Indeed, for
any given gain g, the under-relaxed gain gα can be brought down to a critical
value of one by using an under-relaxation coefficient of

α =
2

1 + g
(5.44)

Note that α ∈]0, 2[for all g values.
As noted before (see section 5.2.8), the average sequence of acceleration

error Ereg displays a convergence or divergence rate that tends to be globally
constant albeit with some fluctuations (Fig. 5.5). Hence the buoyancy instabil-
ity behaves on average like a geometric sequence (Eq. 5.36). As a consequence
it appears meaningful to perform under-relaxation so as to alter the instability
growth rate and bring the sequence to convergence. The generic definition of
the (Dtv

′n)n∈N sequence previously introduced in equation 5.28 should hence
substitute its recursion rule by

Dtv
n+1 = αL (Dtv

n) + (1− α)Dtv
n. (5.45)

However, this simple change in the framework of the 1D model cannot be
implemented simply in 2D solvers without significant consequences. Indeed
consider a vorticity equation of the form

∂ω

∂t
= Rhs(ω) (5.46)

where Rhs(·) corresponds to the Right-Hand Side operator of the vorticity
equation. The under-relaxed recursion rule (Eq. 5.45) translates in the frame-
work of 2D solvers as

ωn+1 = ωn + α

ˆ tn+1

tn
Rhs(ω) dt + (1− α)ht∇×

Duuu

Dt

n

︸ ︷︷ ︸
“under-relaxation term”

(5.47)

where the integral is evaluated from the ordinary differential equation 5.46.
However, ideally the right-hand side of the vorticity equation should be modi-
fied

∂ω

∂t
= Rhs′α(ω) (5.48)

such that the under-relaxation is performed from within the right-hand side
directly

ωn+1 = ωn +

ˆ tn+1

tn
Rhs′α(ω) dt (5.49)

Unfortunately the under-relaxation term cannot be simply brought under
the integral without altering the outputs of the solver. Indeed, a vorticity
equation defined as

∂ω

∂t
= Rhs(ω) +

1− α
α
∇× Duuu

Dt

n−1

. (5.50)

5.4. Achieving stability through under-relaxation 93

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3
D

tv

(a) 1D model using ideal under-
relaxation (Eq. 5.47)

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

(b) 1D model using “unsplit” relax-
ation (Eq. 5.50)

Figure 5.10: Influence of under-relaxation type on material accelerations.
Shown using a RK2 Midpoint time integrator, α = 0.5, ρ+/ρ− = 1000. Each
curve corresponds to a single time step: Dtv

0 (), Dtv
1 () ,

Dtv
2 (), Dtv

3 (), Dtv
4 (), Dtv

5 ()

and integrated as

ωn+1 = ωn + α

ˆ tn+1

tn
Rhs′α(ω) dt (5.51)

is equivalent to (Eq. 5.47) only to first order, as for any splitting scheme. Figure
5.10 compares the output of a 1D model performing the ideal under-relaxation
(Eq. 5.47) and that of a 1D model modified to perform the “unsplit” under-
relaxation (Eq. 5.50). It is very clear that the output of both cases are very dif-
ferent from each other. Moreover, the “ideal under-relaxation” case (Fig. 5.10a)
converges at an average common ratio of 0.9617 whereas the “unsplit nuder-
relaxation” form (Fig. 5.10b) diverges with an average common ratio of 1.0458,
which is to say a relative error of 8.75%. Eventually, note that those differ-
ences are obtained just by moving the under-relaxation term from outside the
integral (Eq. 5.47) to within the ODE (Eq. 5.50). The under-relaxation factor
α is still outside the integral (Eq. 5.51). Moving it to within the integral will
also bring changes to the solver’s output. It is hence shown in this section that
the ideal under-relaxation cannot be implemented by a change in the vorticity
equation without altering greatly the solver’s outputs.

5.4.2 Alternative to ideal under-relaxation

Since an “ideal” under-relaxation cannot be implemented through a simple
change of the vorticity equation, an alternative solution is chosen. The vorticity
equation (Eq. 5.4) is modified by substituting the material acceleration in the
baroclinic term by an “under-relaxed” material derivative approximation Dtuuu

∗

Dω

Dt
= (Dtuuu

∗ − ggg)× ∇ρ
ρ

+
1

ρ
∇× (∇·τττ) + ∇×FFF s (5.52)

94 Chapter 5. High mass-density ratio VPM method

0 50 100 150 200
n

10−4

10−3

10−2

10−1

100

101

102

103

104
E

(a) Euler-Explicit under-relaxed with
α = 0, 75. From the slowest to the
fastest descending curve: ρ+ = 80,
ρ+ = 50, ρ+ = 41.568718, ρ+ = 35
and ρ+ = 30.

0 50 100 150 200
n

10−4

10−3

10−2

10−1

100

101

102

103

104

E

(b) Runge-Kutta 3 under-relaxed with
α = 0.90. From the slowest to the
fastest descending curve: ρ+ = 230,
ρ+ = 180, ρ+ = 154.899888, ρ+ = 120
and ρ+ = 90.

Figure 5.11: Same cases as in (Fig. 5.5) but under-relaxed such that they all
converge. Each curve corresponds to a given ρ+ while ρ− remains fixed at 1

where the under-relaxed material acceleration approximation Dtuuu
∗ is calculated

within each time step n as

Dtuuu
∗,n = αDtuuu(t, tn−1) + (1− α) Dtuuu

∗,n−1 (5.53)

and the initial under-relaxed material acceleration Duuu
Dt

∗,−1 is taken equal to
zero. This form of under-relaxation is chosen because it brings very small
changes to the vorticity equation and only affects the term responsible for the
instability i.e. the baroclinic term.

In the 1D model, the under-relaxation on material acceleration Dtuuu trans-
lates itself as an under-relaxation on the acceleration error Dtv

′

Dtv
′ ∗,n = αDtv

′(t, tn−1) + (1− α) Dtv
′ ∗,n−1 (5.54)

Similarly to the non-relaxed case (see section 5.2.7), and using the same for-
malism (see equation 5.31), the under-relaxed sequence is defined as

Dtv
∗,n =

m∑

l=1

αl−1 dl L
l
(
αDtv

n + (1− α) (1 + ckl)Dtv
∗,n−1

)
(5.55a)

dl =

m∑

k1=1

k1−1∑

k2=1

· · ·
kl−1−1∑

kl=1

bk1
ak1k2

· · · akl−1kl

(1 + ck1
)(1 + ck2

) · · · (1 + ckl)
(5.55b)

The under-relaxed sequence of four time-integrators is given in Appendix D.

5.4.3 Results of under-relaxation
Under-relaxation aims at stabilizing previously unstable simulations. Figure
5.11 shows the same five cases as the ones previously studied in the non-relaxed

5.5. Harmonic analysis of the instability 95

cases (Fig. 5.5) considered in Section 5.2.8. The Euler-Explicit and Runge-
Kutta 3 time integrators defined in (D.1) and (D.4) use an under-relaxation
factor α of respectively 0.75 and 0.90. Those values have been chosen arbitrarily
such that all the unstable or non-converging cases became stable, as can be seen
on Figure 5.11.

5.4.4 Comparison of 1D model against 2D VPM solver

Similarly as in the earlier section (see section 5.3), the output of the 1D model
is compared to that of a 2D VPM solver, but this time with under-relaxation.

Firstly, the material acceleration profiles outputted by the 1D model is
compared to the one calculated by the 2D VPM solver. Figures 5.13 and 5.12
show those profiles in the case of an Euler-Explicit and of a Runge-Kutta 3
time integrators. One can observe a very good match between the output of
both solvers. This is confirmed with the plot on absolute error (Fig. 5.14) which
shows that the absolute error is still an order of magnitude smaller outside the
regions of high-gradients.

Moreover, the convergence plots shown in Figure 5.15 confirm a good con-
sistency between prediction between the under-relaxed 1D model and the cor-
responding 2D simulations. The agreement is excellent for the Euler-Explicit
time integrator. On the other hand, the predictions of the 1D model are not
as accurate in the Runge-Kutta 3 case, yet they remain very good.

5.5 Harmonic analysis of the instability

The motivation behind the development of the 1D model presented in Section
5.2 is to express the numerical instability problem in the simplest form possi-
ble. In the case of the 1D model, it is represented by a sequence of functions
(Dtv

′ n)n∈N having a linear recursion rule. In practice, the user would need
to first find the recursion rule corresponding to the time integrator used with
the help of equation 5.55, then run a numerical solver to compute the Dtv

′ n

elements of the sequence one by one to see whether and how fast it converges.
However, one could wish for an even easier-to-use solution.

Traditionally, instabilities are characterized through harmonic analysis. This
method is very popular thanks to its extreme simplicity and its accuracy at cap-
turing the behavior of linear instabilities. The present section attempts at per-
forming a harmonic analysis of the sequence of acceleration errors (Dtv

′ n)n∈N
in the hope of obtaining accurate instability growth or decay rates without
having to resort to a numerical solver.

Unfortunately, in the case of the buoyancy numerical instability, the har-
monic analysis cannot be conducted exactly. Indeed, the S (·) operator intro-
duces a shift in the values because of its very definition (Eq. 5.11). For instance
when inputting a cosine, S (·) outputs a sine plus an offset. This shift trans-
lates in the equations as an additional term, which is not easily handled by a
harmonic analysis. However, one can assume the shift to be equal to zero and
perform an harmonic analysis based on this hypothesis. The impact of this

96 Chapter 5. High mass-density ratio VPM method

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

(a) Computed by 2D VPM solver

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

(b) Predicted by 1D model

Figure 5.12: Comparison of material accelerations between 2D VPM solver and
1D model: Euler-Explicit with ρ+

ρ−
= 80 and α = 0.75. Each curve corresponds

to a single time step: Dtv
0 (), Dtv

1 () , Dtv
2 (),

Dtv
3 (), Dtv

4 (), Dtv
5 ().

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

(a) Computed by 2D VPM solver

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv

(b) Predicted by 1D model

Figure 5.13: Comparison of material accelerations between 2D VPM solver
and 1D model: Runge-Kutta 3 with ρ+

ρ−
= 230 and α = 0.90. Same legend as

(Fig. 5.6)

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv
| m

od
el
−
D

tv
| V

P
M

(a) EE, ρ+

ρ−
= 80 and α = 0.75

−1.0 −0.5 0.0 0.5 1.0
x∗

−3

−2

−1

0

1

2

3

D
tv
| m

od
el
−
D

tv
| V

P
M

(b) RK3, ρ+

ρ−
= 230

Figure 5.14: Error between 1D model and 2D VPM solver. Same legend as
(Fig. 5.12)

5.5. Harmonic analysis of the instability 97

0 50 100 150 200
10−4

10−3

10−2

10−1

100
E

(a) EE, ρ+

ρ−
= 30, α = 0.75

0 50 100 150 200
10−4

10−3

10−2

10−1

100

E

(b) RK3, ρ+

ρ−
= 90, α = 0.90

0 50 100 150 200
10−4

10−3

10−2

10−1

100

E

(c) EE, ρ+

ρ−
= 35, α = 0.75

0 50 100 150 200
10−4

10−3

10−2

10−1

100

E

(d) RK3, ρ+

ρ−
= 120, α = 0.90

0 50 100 150 200
10−4

10−3

10−2

10−1

100

E

(e) EE, ρ+

ρ−
= 41.568718, α = 0.75

0 50 100 150 200
10−4

10−3

10−2

10−1

100

E

(f) RK3, ρ+

ρ−
= 154.899888, α = 0.90

0 50 100 150 200
10−4

10−3

10−2

10−1

100

E

(g) EE, ρ+

ρ−
= 50, α = 0.75

0 50 100 150 200
10−4

10−3

10−2

10−1

100

E

(h) RK3, ρ+

ρ−
= 180, α = 0.90

0 50 100 150 200
n

10−4

10−3

10−2

10−1

100

E

(i) EE, ρ+

ρ−
= 80, α = 0.75

0 50 100 150 200
n

10−4

10−3

10−2

10−1

100

E

(j) RK3, ρ+

ρ−
= 230, α = 0.90

Figure 5.15: Convergence rates with under-relaxation

98 Chapter 5. High mass-density ratio VPM method

assumption on the accuracy of the prediction will be assessed in the case of an
Euler-Explicit time-integrator.

The error in material acceleration Dtv
′ is Fourier-decomposed in a sum of

harmonics Dtv
′
λ of wavelength λ = 2π/k. Each are a product of an ampli-

tude time-dependant function A(t) and a shape function e−i k x that is space-
dependant

Dtv
′
λ = A(t) e−i k x (5.56)

In the absence of offset, the local equation on acceleration error (Eq. 5.26) is
equivalent to

∂

∂x

(
Dtv

′ n+1
)

= −Dtv
′ n ∂ ln(x)

∂x
(5.57)

Each harmonic is inputted individually in the previous equation which yields

An+1 i kn+1 e−i k
n+1 x+ϕ = An e−i k

n+1 x ∂ ln(ρ)

∂x
(5.58)

where ϕ is the offset in phase. Taking the argument yields

kn+1 x+
π

2
+ ϕ = kn x (5.59)

Hence the harmonic at the next time step is phase-shifted by −π2 and keeps
the same frequency. Taking the modulus yields

An+1

An
=

1

kn
∂ ln(ρ)

∂x
(5.60)

Hence the stability or instability of the scheme is dictated by the amplitude
of the ∂ ln(ρ)

∂x function. The highest gain is obtained at the longest admissible
wavelength which is equal to the thickness 2ε of the interfacial transition region
Γε. Indeed, since next time step’s acceleration will be phase-shifted by π

2 , a
wavelength of twice the interfacial thickness cannot survive more than a time
step. Hence

gmax =
1

2π
max
x∈Γε

(
∂ ln(ρ)

∂x

)
(5.61)

For the scheme to be stable one requires gmax < 1, which is to say

max
x∈Γε

(
∂ ln(ρ)

∂x

)
< 2π (5.62)

Recall that the problem has been non-dimensionalized in Section 5.2.4. With
the left-phase mass density fixed as ρ− = 1 and the mass density profile being
computed as specified in equation 5.33, the marginal stability limit is reached
at a mass density ratio ρ+/ρ− of 15.64.

To summarize, the harmonic instability predicts preservation of the wavenum-
ber

kn+1 = kn (5.63)

phase-shifting of the modes by

ϕ = −π
2

(5.64)

5.6. Practical view on the buoyancy numerical instability 99

and a maximum gain of

gmax =
1

2π
max
x∈Γε

(
∂ ln(ρ)

∂x

)
(5.65)

Previously, the 1D model predicted a critical mass density ratio ρ+/ρ−
of 41.5 (Table 5.3). In comparison, the critical value of 15.64 obtained by
the harmonic analysis captures the correct order of magnitude but is off by
a 62% relative error. Hence the approximation performed at the beginning
of the harmonic study which consisted in neglecting the effect of the offset
introduced by operator S (·) is not acceptable, although it can be used to have
an evaluation of the order of magnitude of the mass density ratio ρ+/ρ−.

On the other hand, one can note that the acceleration error profiles Dtv
′

outputted by the 1D model are very different from a time step to the next
(Fig. 5.6b), yet bear similarities when taken over a 4 time steps period (Fig. 5.3b).
This seems consistent with the −π2 phase-offset predicted by the harmonic
study.

Likewise, the exponential growth of the buoyancy instability (i.e. linear
growth on a log scale) (Fig. 5.5) is consistent with the preservation of the
wavenumber kn+1 = kn predicted by the harmonic instability. Indeed, if each
mode had a different gain and that the wavenumber changed from a time step
to the next, then this exponential growth or decay of the instability would not
be observed.

To put it back into a practical perspective, the buoyancy instability’s growth
or decay rate cannot be reliably obtained through harmonic analysis. Instead
it must be obtained through the use of a numerical solver that computes each
term of the sequence of acceleration errors (Dtv

′ n)n∈N one after the other.

5.6 Practical view on the buoyancy numerical in-
stability

At the present stage, a method to predict the growth or decay rate of the
buoyancy instability has been proposed. Practically, a user whose simulation
is subject to the buoyancy instability would need to (i) find the recursion rule
of the material acceleration sequence (Dtv

′ n)n∈N corresponding to the time
integrator used (Eq. 5.55), (ii) run a script to calculate the sequence elements
Dtv

′ n, (iii) observe whether their method is convergent or not, (iv) if not,
change the simulation parameters and start back from step (i) until convergence
is achieved.

From the user perspective, two simulation parameters are to be chosen
carefully when considering a simulation subject to the buoyancy numerical
instability. Firstly, the under-relaxation factor α obviously plays an important
role. Secondly, the choice of the time integrator has a strong influence on the
stability of the numerical method as well. This was hinted in Table 5.3 which
showed that different time integrators have different values for the critical mass
density ratio ρ+/ρ−.

100 Chapter 5. High mass-density ratio VPM method

Eventually, the user sets the mass density values and profile according to
the requirement of the simulation to be performed. Hence those parameters
cannot be freely chosen, yet they are instrumental to the development of the
instability.

The purpose of this section is to give a more complete detailed description
of the influence of these parameters, and help the user in the choice of their
simulations’ parameters.

5.6.1 Influence of the under-relaxation factor α

For a given time integrator, each under-relaxation factor α allows for a certain
critical mass density ratio ρ+/ρ−. Figure 5.16 plots the marginal stability
curve () of four time integrators. Each () curve connects under-
relaxation values α to the respective critical mass density ratios ρ+/ρ− they
allow. This plot can also be read in the other direction and help a user who
would like to know, given the mass density ratio ρ+/ρ− of their simulation,
what under-relaxation factor they must choose.

To each curve corresponds a given convergence rate, and for that reason they
will be referred to as “ìso-convergence” curves in the rest of this document. For
instance () represents all cases that converge at a rate of 1/2 every
10 time steps, whereas the marginally stable curve () is the collection of
situations where the convergence rate is zero.

Notice that for relaxation factors α below 0.4, a lower relaxation factor
does not necessarily imply more stability. This is due by the fact that the
“under-relaxation” implemented is not exactly an under-relaxation (see section
5.4.1).

5.6.2 Influence of the time integrator

Previously Table 5.3 showed in the non-relaxed case that the critical mass den-
sity ratio value ρ+/ρ− depended on the time integrator used. This information
can be generalized in the under-relaxed case. This is the purpose of Figure 5.17
which shows the marginal stability iso-convergence curves of four different time
integrators on the same plot. It appears that higher-order time integrators tend
to be more stable, although the data is too scarce to support this statement in
the general case.

It also shows that two time integrators of same order (RK2 Midpoint (see
section D.2) and RK2 “Other” (see section D.3) in the present case) might not
have the same behavior regarding the buoyancy numerical instability, with one
(RK2 Midpoint) being more stable than the other (RK2 “Other”). This is even
more remarkable considering that both have the same stability properties ac-
cording to a von Neumann stability analysis. This property is further discussed
in the next sub-section.

Time integrators of identical von Neumann stability properties

This section shows that two time integrators of identical stability properties in
the sense of the von Neumann stability analysis may have different behaviors

5.6. Practical view on the buoyancy numerical instability 101

100 101 102 103 104 105
ρ+
ρ−

0.0

0.2

0.4

0.6

0.8

1.0

(a) Euler-Explicit

100 101 102 103 104 105
ρ+
ρ−

0.0

0.2

0.4

0.6

0.8

1.0

(b) RK2 Midpoint

100 101 102 103 104 105
ρ+
ρ−

0.0

0.2

0.4

0.6

0.8

1.0

(c) RK2

100 101 102 103 104 105
ρ+
ρ−

0.0

0.2

0.4

0.6

0.8

1.0

(d) RK3

Figure 5.16: Iso-convergence curves: marginal stability (), error halved
every 10 time steps () , error divided by 10 every 10 time steps
(), error divided by 100 every 100 time steps () and, as a reference,
critical stability of Euler-Explicit ()

101 102 103 104 105
ρ+
ρ−

0.0

0.2

0.4

0.6

0.8

1.0

α

Figure 5.17: Influence of time integrator on marginal stability. Euler explicit
(), RK2 Midpoint () , RK2 (), RK3 ().

102 Chapter 5. High mass-density ratio VPM method

regarding the buoyancy numerical instability. In particular, the RK2 midpoint
and RK2 time integrators defined in appendices D.2 and D.3 are considered
here.

Following von Neumann stability analysis, the generic equation

∂q

∂t
= Rhs(q) (5.66)

is being integrated for each individual harmonic qλ of q, where λ is its wave-
length. For each wavelength λ, the spatial von Neumann stability analysis
provides a complex coefficient zλ such that

Rhs(q
λ
) = z

λ
q
λ

(5.67)

Injecting this definition of the right-hand side in the algorithm of both RK2
time integrators (Algo. 16) (Algo. 17) yields the same definition for the gain
over a time step ∣∣∣∣

qn+1
λ

qnλ

∣∣∣∣ =

∣∣∣∣1 + htzλ +
h2
t

2
zλ

∣∣∣∣ (5.68)

for both RK2 time integrators, as was to be expected. Hence although they
have different definitions and Butcher tables, both still share the same stability
properties in the sense of the von Neumann stability analysis.

However, in the case of the buoyancy instability, the RK2 midpoint scheme
behaves as

Dtv
′ n+1 = −2

3
S
(
Dtv

′ n ∂ ln(ρ)

∂x

)
+

1

3
S
(
S
(
Dtv

′ n ∂ ln(ρ)

∂x

)
∂ ln(ρ)

∂x

)

(5.69)
whereas the other RK2 scheme behaves as

Dtv
′ n+1 = −3

4
S
(
Dtv

′ n ∂ ln(ρ)

∂x

)
+

1

4
S
(
S
(
Dtv

′ n ∂ ln(ρ)

∂x

)
∂ ln(ρ)

∂x

)

(5.70)
Hence they have different stability properties in regards to the buoyancy in-
stability, despite having identical stability properties in the sense of von Neu-
mann. An interesting research topic would then be to know for a given order of
Runge-Kutta time integrator, what is the highest mass density ratio that can
be achieved, and what is the definition of the corresponding time integration
scheme.

5.6.3 Influence of the mass density profile

The mass density profile is characterized by two things: firstly, by the mass
density values ρ− and ρ+ within both phases Ω− and Ω+ which are fixed by
the problem to be solved. Secondly by its shape, which is chosen by the user.

In particular, the profile defined in equation (Eq. 5.33) and used so far in this
chapter has been chosen arbitrarily. Other profiles are possible, and perhaps
may encourage or weaken the buoyancy instability.

5.6. Practical view on the buoyancy numerical instability 103

Additionally, iso-convergence curves obtained so far consider mass density
ratios ρ+/ρ−. However, those curves are only meaningful if they are valid for
any value of the left mass density ρ−.

The current section hence studies the influence of the shape of the mass
density profile and of the left mass density value on the instability.

Influence of the shape of the mass density profile

In this sub-section, three shapes of the ∂ ln(ρ)
∂x function are tested. The moti-

vation is to see if, for a given mass density ratio ρ+/ρ− imposed by the study
case to simulate, there can be better profiles than others. Firstly, the ∂ ln(ρ)

∂x
profile corresponding to a mass density profile taken as the integral of a cosine
mollifier

δε(x) :=
1

2
(1 + cos(2π x)) (5.71a)

Hε(x) :=

ˆ x

x=−1/2

δε(x)dx =
1

2
+ x +

1

2π
sin(2π x) (5.71b)

ρ(x) := ρ− (1−Hε(x)) + ρ+Hε(x) (5.71c)

∂ ln(ρ)

∂x
=

∂Hε(x)
∂x

1
2
ρ++ρ−
ρ+−ρ− + Hε(x)− 1

2

(5.71d)

Secondly, a ∂ ln(ρ)
∂x profile in the shape of a cosine

ρ(x) :=
√
ρ− ρ+ exp

(
1

2
ln(ρ−/ρ+) sin(−π x)

)
(5.72a)

∂ ln(ρ)

∂x
=

1

2
π cos(π x) ln

(
ρ+

ρ−

)
(5.72b)

Eventually a constant ∂ ln(ρ)
∂x profile

ρ(x) := ρ− exp

((
x+

1

2

)
ln

(
ρ+

ρ−

))
(5.73a)

∂ ln(ρ)

∂x
= ln

(
ρ+

ρ−

)
(5.73b)

Figure 5.18 plots the marginal stability curve of each of those three profiles
in the case of an Euler-Explicit time integrator. One can see that both the mass
density profiles ρ(x) shaped as the integral of a cosine and such that ∂ ln(ρ)

∂x is a
cosine perform best. Indeed for any value of the under-relaxation factor α they
allow for the highest mass density ratios ρ+/ρ−. On the other hand, the mass
density profile ρ(x) shaped such that ∂ ln(ρ)

∂x is flat performs the worst. The
difference is small for unexisting or weak under-relaxation (α close to 1), but
grows up to almost three orders of magnitude difference for an under-relaxation
factor α of 0.1. Note however, that using a flat profile for ∂ ln(ρ

∂x would not be
acceptable in practical simulations because of the discontinuities it introduces.

104 Chapter 5. High mass-density ratio VPM method

0 10 20 30 40 50 60 70 80 90

max
(
∂ ln(ρ)
∂x

)
0.0

0.2

0.4

0.6

0.8

1.0
α

(a) Maxima of ∂ ln(ρ)
∂x

101 102 103 104 105 106 107
ρ+
ρ−

0.0

0.2

0.4

0.6

0.8

1.0

α

(b) Mass density ratio

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01
ρ+−ρ−
ρ++ρ−

0.0

0.2

0.4

0.6

0.8

1.0

α

(c) Atwood number

Figure 5.18: Marginal stability curves of the Euler-Explicit time integrator for
different measures of “unstableness”. Each measure is used over three shapes
of color function: mass density as integral of cosine (Eq. 5.71) (), ∂ ln(ρ)

∂x

is cosine (Eq. 5.72) (), ∂ ln(ρ)
∂x is constant (Eq. 5.73) ().

On the other hand, the two other mass density profiles ρ(x) would both be
acceptable, and despite having different definitions they perform about as well.

To summarize, the choice of the mass density profile do affect the maxi-
mum admissible mass density ratio ρ+/ρ− but in a negligible way. In order to
stabilize a method it would be much more effective to resort to other means,
such as changing the time integrator or the under-relaxation factor α used.
Besides, the baroclinic term is not the only term affected by the choice of the
mass density profile. For instance the viscous term of the vorticity equation
(Eq. 5.4) is also a function of mass density. Hence if a mass density profile is
to be chosen then its influence on the viscous term is to be considered very
seriously.

5.6.4 Measuring the “unstableness” of a method

Iso-convergence plots (Fig. 5.16) (Fig. 5.17) aim to show the under-relaxation
factor α required to run a simulation of a certain “unstableness”. So far this
unstableness has been measured by the ratio of mass density ρ+/ρ−. This
section aims at assessing whether it is indeed a good measure.

5.7. Summary 105

Amongst the parameters that have an influence on the instability, some have
a minor influence (such as the shape of the mass density profile), whereas others
strongly affect it (such as the time integrator or the under-relaxation factor α).
Ideally, the measure of unstableness should be insensitive to the low-influence
parameters while displaying a difference for high-influence parameters. A good
measure of unstableness must hence have a weak coupling with the shape of
the mass density profile ρ(x). That way, an iso-convergence curve will be valid
for any profile of mass density ρ(x).

The approximate harmonic study of the Euler-Explicit buoyancy instability
(see section 5.5) suggests that the instability growth rate is strongly dependent
on the maxima of the ∂ ln(ρ)

∂x function (Eq. 5.65). This maxima could hence be
an interesting measure of the unstableness of the method. Additionally two
other options can be considered: the mass density ratio ρ+

ρ−
or the Atwood

number A = ρ++ρ−
ρ+−ρ− .

Figure 5.18 plots the iso-convergence curves in the case of an Euler-Explicit
time integrator using as abscissa each of those three measures. None of the
three measures appears to be completely uncoupled with the shape of the mass
density profile ρ(x). Nevertheless, the ratio of mass densities (Fig. 5.18b) ap-
pears to be less sensitive than the maxima of ∂ ln(ρ)

∂x (Fig. 5.18a). Also, the
Atwood number (Fig. 5.18c) is not an appropriate measure because it com-
presses the curves towards A = 1 for high mass density ratios. This does not
allow an easy reading of the curves. Moreover, at high mass density ratios, the
quantity 1

1−A is almost equal to the mass density ratio ρ+

ρ−
. In other words,

plots (Fig. 5.18c) and (Fig. 5.18b) are two different ways to display almost the
same information.

It hence appears that the ratio of mass densities ρ+/ρ− is indeed a good
measure of “unstableness”, although it is not perfect.

On a side note, remark that the mass density ratio ρ+

ρ−
is directly connected

to the integral of ∂ ln(ρ)
∂x over the interfacial transition region Γε

ρ+

ρ−
= exp

(ˆ +ε

−ε

∂ ln(ρ)

∂x
dx

)
(5.74)

Hence the preference of using the mass density ratio ρ+

ρ−
over max

(
∂ ln(ρ)
∂x

)

to measure instability corresponds to assessing that the integral of the ∂ ln(ρ)
∂x

function is more strongly related to the instability’s growth than its maxima.

5.7 Summary

A numerical instability exists in the parabolic form of the vorticity equation
(Eq. 5.4). It is caused by a strong coupling between the vorticity that this
equation integrates in time and the material acceleration Duuu

Dt embedded in the
baroclinic term of the same equation. In practice, the instability occurs as the
guessed material acceleration Duuu

Dt greatly exceed the gravity acceleration ggg in
the falling phase.

106 Chapter 5. High mass-density ratio VPM method

Any problem with sufficiently large mass density ratios ρ+/ρ− is potentially
subject to this issue. The instability depends strongly on the mass density ratio
ρ+

ρ−
and on the time integrator used. It is not influenced by the time step value

(assuming it is constant from a time step to the next) unlike most numerical
instabilities encountered in CFD. Eventually, two time integrators of identical
stability properties according to a von Neumann analysis might have a different
behaviour on the buoyancy instability, with one being more stable than the
other. It would be interesting to study what is the most stable Runge-Kutta
time integrator of a given order and how far in the mass density ratios ρ+/ρ−
it can go.

A harmonic analysis of the instability can be useful to capture the general
behavior and to estimate the order of magnitude of the critical mass density
ratio ρ+/ρ−. However it only describes very coarsely the phenomenon. In-
stead, a 1D model has been devised that allows a very good correlation with
2D simulations. This model describes the instability through a sequence of
functions. The recursion rule of the sequence is changes depending on the time
integrator used.

An under-relaxation of the 2D numerical method is proposed that allows
higher mass density ratios ρ+/ρ−. The 1D model is extended to predict the
stability of such simulations. “Iso-convergence” curves have been plotted for
four popular time integrators. They allow to select the under-relaxation factor
α required to achieve a given stability decay rate at the mass density ratio of
the problem at hand. Eventually, a general method has been given to obtain
the sequence describing the behavior of any Runge-Kutta time integrator.

Chapter 6

Numerics and solver
validation

6.1 Overview of the benchmarks

Before discussing numerical results, the present section gives an overview of the
benchmarks that will be used, what they allow to assess and the motivations for
their selection. Also it is explained why the dam break benchmark will not be
used, despite its popularity in the CFD literature. Eventually, note that Figure
6.1 shows a graphical description of the benchmarks, which is designed to help
the reader in their reading. Moreover, Table 6.3 indicates the non-dimensional
numbers for each of the benchmarks.

6.1.1 Benchmarks assessing the interface capturing method

The Zalesak benchmark introduced by Zalesak in 1979 [201] performs a solid
rotation on a bubble shaped as a slotted disk. After one revolution, the shape
of the bubble is compared to what it used to be initially. This allows to see
how well the level set advection equation performs under rotating flows. The
slot in the bubble is quite challenging to model because of the small space
separating each sides of the slot and of the sharp angles it introduces in the
geometry. On the other hand, the outer part of the bubble is quite wide and
regular which allows to see how well smooth shapes are advected. Hence this
benchmark indicates well the performance of the level set advection for most
bubble shapes.

The vortex-stretched bubble benchmark introduced by Rider et al. in 1995
[202] advects a circular bubble by a vortex flow. The bubble is being stretched
and rolled around the domain center for a time lapse δt. After that, the flow
is reverted and the bubble is brought back to its original form. Comparing the
final and initial bubbles allows to evaluate the loss of mass caused when the
bubble is being stretched by the flow. The most stretched shape reached by
the bubble just before reverting the flow also indicates how well the level set
method models the trailing edge of the bubble. Eventually, the influence of the

107

108 Chapter 6. Numerics and solver validation

reinitialization procedure on the loss of mass and artificial smoothing of the
bubble can be investigated.

6.1.2 Benchmarks assessing the computation of surface
tension

The static surface tension benchmark [203] [147] considers a spherical bubble
in a gravity-free space. Analytically, the initial condition corresponds to the
permanent regime and one expects the bubble to stay still. However, because
of discretization errors the solvers will generate a spurious velocity field. Its
magnitude gives an indication on the accuracy of the method. Moreover, the
pressure jump across the interface δp does not match exactly the one given by
Laplace law

δp =
4σ

d
(6.1)

with d the diameter of the bubble. The deviation between the numerical pre-
diction of the pressure jump and its value given by the Laplace law is often used
to assess the accuracy of the method additionally to the intensity of spurious
currents.

The standing wave benchmark [178] [204] [205] starts with an interface
disturbed in a sinusoidal shape. At simulation start the surface tension puts
the interface in motion thereby generating a standing wave, while viscous effects
damp those oscillations which flattens the interface. This benchmark studies
the interaction of the surface tension term with viscous effects. It is very similar
to the oscillating bubble benchmark [206] which is also very popular in the
literature. However, the standing wave benchmark has an analytical solution
given by Prosperetti [207], which the oscillating bubble does not have. For that
reason, the standing wave benchmark was preferred over the oscillating bubble
benchmark.

6.1.3 Benchmarks on complex flows

The Rising Bubble benchmark [208] [108] studies an initially still and circular
bubble which is being pushed upwards by buoyancy effects. This benchmark
evaluates the Navier-Stokes implementation in high viscosity flows with an
emphasis on the modelling of the surface tension term. The velocity of the
bubble’s ascent is checked against reference data. Also, surface tension effects
are important in that benchmark and the shape taken by the bubble at a given
time is studied and compared to a reference. Experimental data exists in 3D
but the experiment is impossible to conduct in 2D. Therefore, our results are
compared to the self-convergence limit of simulations run by various codes from
different laboratories. To be specific, the reference we use is the work by Hysing
and al. in 2009 [208].

The Rayleigh-Taylor benchmark considers, as its name suggests, a Rayleigh-
Taylor instability [209] [210]. This benchmark has been used for a very long
time, as Baker et al. 1980’s article suggests [84]. Initially, a heavier fluid is
placed above a lighter fluid. In the real world the interface cannot be exactly

6.1. Overview of the benchmarks 109

flat, which triggers the instability. On the other hand, in the numerical simu-
lations, the interface separating both phases is slightly perturbated such that
the problem is unconditionally unstable. The actual Rayleigh-Taylor insta-
bility starts with a linear increase of the perturbation’s amplitude, with gives
birth to a succession of “fingers” of heavier fluid that penetrate the lighter fluid.
The fingers grow individually then interact with each other. The distance be-
tween fingers is characteristic of the spacial frequency of the instability. In the
Rayleigh-Taylor benchmark however, only one finger is simulated in a free-slip
box such that no interaction phenomenon can occur. Instead what is stud-
ied is the evolution of the finger’s shape as it falls. There are two variants of
the Rayleigh-Taylor benchmark: the classic benchmark (for instance [84]) that
does not have surface tension, and a variant introduced by Gomez et al. in
2005 [177] with surface tension. The case without surface tension witnesses the
apparition of fine and complex flow structures and interface shape. It is hence
very sensitive to solver errors since deviations introduced in the early stages of
the fall will have strong repercussions in the later shape of the interface. On
the other hand, in the second case surface tension prevents very fine structure
to appear by keeping the phase in one lump. Therefore it is less sensitive to
solver errors. Nevertheless, the interface shows pointy corners on which it can
be challenging to evaluate the surface tension term. Hence the Rayleigh-Taylor
simulation with surface tension is an excellent way to assess the accuracy of
the surface tension term. Note that the Reynolds number at stake are an or-
der of magnitude greater than those reached in the Rising Bubble benchmarks
(Table 6.3). Both cases are studied in Gomez et al.’s work [177], and therefore
the latter will be used as a reference.

The dam break benchmark has been considered [108] [211] but will not be
used for validation. This benchmark considers a closed vessel containing in
a corner a column of fluid of higher mass density than the surrounding fluid
(Fig. 6.1d). Upon simulation start, the column of fluid collapses and spreads
in the domain until the heavier fluid eventually occupies the lower part of
the domain. This benchmark evaluates highly advective flows with negligible
surface tension. Strong topology changes also occur in that benchmark with
the breakup of droplets and a plunging wave. However, this benchmark has
major drawbacks. Firstly, several experimental bias are present in the original
1952 article by Martin and Moyce [211], in particular a diaphragm is being
burned using strong electric currents, however it is not clear whether the whole
diaphragm vanishes or if an unburned part of it is being carried away with
the flow. Additionally, the authors are not certain of the exact time when
the diaphragm ruptures 1 therefore their plots may be offsetted in time. In
more recent experimental works [212] [213] [214] the diaphragm being burned
is replaced by a partitioning wall that is being lifted very quickly. However
doing so lifts the line of contact between water, air and dam thereby distorting
the shape of the water region. All in all, the dam break experiments performed

1From [211]: “No doubt further improvements in technique could be made, but in the
results tabulated here the times have been normalized so as to give, for any given record
in a series, the same time reading at a finite extent of spread. This time is of the order of
magnitude of that which elapsed between application of the heating current and attainment
of the degree of spread in question.”

110 Chapter 6. Numerics and solver validation

so far and that are known to us can be useful to give coarse information on the
solution but they cannot be used to accurately validate code.

6.1. Overview of the benchmarks 111

(a) Zalesak’s Disk (b) Vortex-Stretched Bubble

(c) Static Surface Tension (d) Dam Break

(e) Standing Wave (f) Rising Bubble (g) Rayleigh-Taylor

Figure 6.1: Initial conditions for each benchmark
() velocity field, () interior region Ω−, () exterior region Ω+

and () is the domain’s origin

112 Chapter 6. Numerics and solver validation

Table 6.1: Benchmarks’ general parameters

Zalesak VSB Static bubble Standing wave Rising Bubble Rayleigh Taylor
A B A B A B C A B

Ref [201] [153] [147] [203] [178] [178] [208] [208]N/A [177] [177]
L 1.00 1.00 1.00 0.05 2π 2π 1.00 1.00 1.00 0.50 0.50
H 1.00 1.00 1.00 0.05 2π 2π 2.00 2.00 2.00 4.00 4.00
d 0.30 0.30 0.50 0.02 - - 0.50 0.50 0.50 - -
a 0.25 0.25 - - - - - - - - -
h 0.25 - - - - - 0.50 0.50 0.50 - -
w 0.05 - - - - - - - - - -
A - - - - 2π

100
2π
100

- - - 0.05 0.05
λ - - - - 2π 2π - - - 1.00 1.00
tend - 8.0 - - - - - - - - -
uuuini (Eq. 6.37) (Eq. 6.39) 000 000 000 000 000 000 000 000 000

Table 6.2: Benchmarks’ physics parameters.
Benchmarks noted with (*) were convergence analyses and hence several meshes
of various refinment were used.

Static bubble Standing wave Rising Bubble Rayleigh Taylor
A B A B A B C A B

g 0 0 0 0 0.98 0.98 0.98 9.81 9.81
σ 0.357 0.01 2 2 24.5 1.96 2.5 0 0.1337
ρ− 4 1 1 1000 100 1 50 0.1694 0.1694
ρ+ 4 1000 1 1 1000 1000 1000 1.225 1.225

µ− 1 1e−5 0.0647

20863

0.0647

20863
1 0.1 0.05 3.13e−3 3.13e−3

µ+ 1 1e−3 0.0647

20863

0.0647

20863
10 10 0.50 3.13e−3 3.13e−3

BC left Slip Slip Slip Slip Slip Slip Slip Slip Slip
BC right Slip Slip Slip Slip Slip Slip Slip Slip Slip
BC bot. Slip Slip Slip Slip No-slip No-slip No-slip Slip Slip
BC top Slip Slip Slip Slip No-slip No-slip No-slip Slip Slip
Mesh (*) (*) (*) (*) 128x256 256x512 512x1024 128x1024 128x1024

Table 6.3: Benchmarks’ dimensionless numbers
Static bubble Standing wave Rising Bubble Rayleigh Taylor
A B A B A B C A B

Lref d d λ/2 λ/2 d d d λ λ
Re 0 0 1.1 0.47 9.8 11 230 140 100
Eo 0 0 0 0 18.0 225 186 - -
Mo 0 0 - - 6.00e−4 1.30 3.72e−6 - -
A 0 0.998 0 0.998 0.818 0.998 0.905 0.757 0.757

6.2. Definition of criteria 113

6.2 Definition of criteria
Each benchmark consists in comparing the output of the VPM solver with
either analytical solutions or reference results from the literature. That com-
parison can be done qualitatively, for example by comparing graphically the
shapes of bubbles. However, for some benchmarks criteria are defined that
measure features of the flow, for instance mass conservation or average bubble
velocity, so as to allow quantitative comparison as well.

6.2.1 Criteria used in benchmarks
The general definitions of the criteria used by all benchmarks are presented
here. Their numerical calculation will be considered in the next section.

Volume conservation

All simulations considered within this thesis are multiphase incompressible
flows without phase change. Hence, the volume of each phase should ideally
remain constant throughout simulations. The volume conservation criterion,
also often referred to as “mass conservation”, allows to measure the increase or
decrease of the volume of each phase. This measure is performed by comput-
ing for a given phase (either the interior Ω− or exterior Ω+ region) the ratio
between the phase’s current and original volumes

ε−mass :=
|Ω−(t)|
|Ω−(t = 0)| (6.2a)

ε+mass :=
|Ω+(t)|
|Ω+(t = 0)| (6.2b)

where | · | is the Lebesgue measure : if V is a solid, then |V | is its volume

|V | =

ˆ
V

1 dx (6.3)

and |∂V | is its surface area

|∂V | =

ˆ
∂V

1 dx (6.4)

Bubble center

The position of the bubble’s center of gravity xxxc is obtained by calculating its
barycenter

xxxc :=
1

|Ω−|

ˆ
Ω−

xxx dx (6.5)

Average bubble velocity

Similarly, its average velocity uuuc is calculated as the average of the velocity
field other the bubble’s volume

uuuc :=
1

|Ω−|

ˆ
Ω−

uuu dx (6.6)

114 Chapter 6. Numerics and solver validation

Bubble sphericity

Additionally, its sphericity Sph is defined as the ratio between the surface area
of bubble Ω− and that of a ball Beq(V) of equal volume |Ω−| = |Beq(Ω−)|

Sph(V) :=
|∂Beq(V)|
|∂Ω−| (6.7)

According to the isoperimetric theorem, the shape of largest surface area for a
given volume is the ball, and hence the isoperimetric inequality Beq(Ω−) ≤ Ω−

is always true at all times. Therefore the sphericity measure cannot exceed
one.

Also note that since the simulation may lose mass, the volume of the interior
region Ω− may change through time and hence the radius of the equivalent ball
Beq must be reevaluated anytime sphericity is to be evaluated.

Height of fluid column

The dam break benchmark measures the height hcol and surge distance dcol of
the column of fluid Ω− at time t. hcol is defined as the y-coordinate of the first
point on the y-axis to be within the other phase Ω+

hcol := min
y

({
y : y ∈ Ω+

}
∪ {H}

)
(6.8)

while dcol is set to be the x-coordinate of the first point on the x-axis to be
within the other phase Ω+

dcol := min
x

({
x : x ∈ Ω+

}
∪ {L}

)
(6.9)

6.2.2 Numerical calculation of criteria
Most criteria introduced in the previous section require the computation of
integrals over volumes

´
V

or surface areas
´
∂V

, where V denotes any subset of
the domain V ⊂ Ω. So far, analytical expressions have been given. However,
they can be evaluated numerically in several ways. The present section makes
a list of numerical methods to do so, and compares their respective accuracy.

Ways to compute volume, surface area and volume integrals

The surface area |∂V | can be computed: (i) using an interface mollifier

|∂V | '
ˆ

Ω

δε dx, (6.10)

or (ii) using a PLIC-like2 reconstruction algorithm which consists in represent-
ing the interface as a straight line on each cell of the grid.

The volume |V | can be computed: (i) using a smeared color function

|V | '
ˆ

Ω

χ
V,ε

dx, (6.11)

2Piecewise Linear Interface Calculation

6.2. Definition of criteria 115

(a) Characteristic
function

() char. func.
χV,ε

(b) Mollifier
() mollifier δε

(c) PLIC
() interior re-
gion
() exterior re-
gion

(d) Threshold
method
() interior
region
() exterior
region

Figure 6.2: Methods to compute volume and/or surface area

(ii) using an interface mollifier3

|V | ' 1

dim(Ω)

ˆ
Ω

δε xxx · n̂̂n̂n dx, (6.12)

(iii) using a PLIC-like reconstruction algorithm or (iv) using a threshold i.e.
each cell is assumed to be either completely in the interior region or completely
in the exterior region.

|V | ' cardinal
({

(i, j) ∈ Ωhhh : φi,j < 0
})

hx hy (6.13)

The different ways to compute volume are shown graphically on Figure 6.2 in
the case where the volume V is an ellipse. All four cases use exactly the same
ellipse. The first subfigure (Fig. 6.2a) shows a smeared characteristic field used
in the characteristic function method (Eq. 6.11). The black region corresponds
to the ellipse. Note the blurry edges of the ellipse due to the smearing of the
characteristic field. The second subfigure (Fig. 6.2b) shows the mollifier field δε
used in the mollifier method (Eq. 6.12). Notice how the mollifier is maximum
on the ellipse’s contour and goes progressively to zero away from it. Then the
third subfigure (Fig. 6.2c) shows the PLIC method. Notice how the contour
of the ellipse is not smooth but in fact made of a succession of short straight
lines. Eventually the fourth subfigure (Fig. 6.2d) shows the threshold method
(Eq. 6.13). Notice the squarish shape of the method which is due to the fact
that grid cells are either completely white or black because of the thresholding.

Eventually the integral
´
V
q dx of a quantity q over a volume V can be

computed in multiple ways. Yet the fields that are being integrated are fairly
smooth (e.g. velocity). Hence considering the value of the field at the center
of each cell appears satisfactory

ˆ
V

q dx '
∑

(i,j)∈Ωhhh

qi,j hx hy (6.14)

3The proof for this definition is shown in Appendix F.5.1.

116 Chapter 6. Numerics and solver validation

Performance comparison of measures of volume and surface area

In order to find which algorithm is best, each is tested on a few shapes that
are shown in Figure 6.3. Each shape has a specificity of its own, which allows
to evaluate the accuracy of the algorithm in such conditions : (i) the cube is
polygonal shape with sharp angles (Fig. 6.3a), (ii) the ellipse is a smooth shape
(Fig. 6.3b), (iii) the drop has a spike which implies the presence of a strong
“shock” in the level set field (Fig. 6.3c), and eventually (iv) the three spheres
are held close together which means the smeared characteristic functions may
not have enough space to spread (Fig. 6.3d). All shapes have been slightly
decentered and rotated on the grid so that no symmetry property may affect
the results.

All shapes have an analytical expression for their volume and surface area,
with the exception of the ellipse whose circumference cannot be determined by
an exact calculation. An approximation of that value which sufficient decimals
is obtained by using the convergent series

π (R1 +R2)

(
1 +

∞∑

n=1

((
0.5

n

) (
R1 −R2

R1 +R2

)2n
))

(6.15)

where R1 and R2 are the ellipse’s major and minor radii respectively R1 ≥
R2. From that reference data, a relative error can be computed between the
numerical evaluations of volume or surface tension and the analytical solution

εrel =
|Vnum|
|Vref |

− 1 (6.16a)

εrel =
|∂Vnum|
|∂Vref |

− 1 (6.16b)

The relative errors for each of the methods mentioned above are presented in
Figure 6.4. The first subfigure (Fig. 6.4a) looks at the accuracy of the methods
to compute volume, whereas the second subfigure (Fig. 6.4b) considers methods
evaluating surface areas. Each gray column corresponds to a different method
for computing errors. For a given method, several different accuracy results
have been obtained depending on the shape used (Fig. 6.3). The result of each
shape is marked using a circle, diamond, triangle or square. Then the range
between the most and least accurate of those methods is emphasized by the
gray bar, which span between both values. What is of interest to us is to
compare the maximum relative error of all methods. The best method is the
one with the smallest of those maximas. Also it is interesting to observe the
spread of the gray bar. A method with a short bar will consistently output
results of comparable accuracy, whereas a method with a tall gray bar will
return results that can sometimes be excellent and sometimes very poor.

Looking at the results, the methods with the lowest maximal error are plic
and chr1 for volume (Fig. 6.4a) and mol1 for surface area (Fig. 6.4b). Hence
those methods are most accurate and should be preferred. However, in practice
it appears that values obtained with chr1 and mol1 tend to vary too greatly
between time steps, therefore plic and mol2 will be preferred to chr1 and mol1

6.2. Definition of criteria 117

(a) Cube (b) Ellipse (c) Drop (d) Three spheres

Figure 6.3: Shapes whose volume and/or surface area will be computed.
() interface Γ and () the level set field.

(a) Relative errors in volume computation

(b) Relative errors in surface area computation

Figure 6.4: Relative errors in the computation of surface areas and volumes
using several algorithms. () represents the span of the relative error :
the upper (resp. lower) edge of the bars is the maximum (resp. minimum)
relative error. Columns chr1 to chr8 correspond to computations performed

using a smeared color function over a length scale of 1 to 8 grid nodes.
Columns mol1 to mol8 follow a similar idea but using a mollifier instead.
Column plic uses a PLIC-like interface reconstruction and thrs applies a
threshold. Eventually (squares), (circles), (triangles) and (diamonds)

correspond respectively to the square (Fig. 6.3a), ellipse (Fig. 6.3b), drop
(Fig. 6.3c) and three spheres (Fig. 6.3d) benchmarks

118 Chapter 6. Numerics and solver validation

respectively. More generally, note how the maximum error tends to increase
with the spread of the smeared characteristic functions and mollifiers: chr8 and
mol mol8 have a higher maximum relative error than chr1 and mol1. This ten-
dency can be observed both when computing volumes (Fig. 6.4a) and surface
areas (Fig. 6.4b). Also, note that mol1 to mol8 have in general greater rela-
tive errors and spread than their chr1 to chr8 counterparts. Hence computing
volumes using the mollifier method (Eq. 6.12) appears to be up to an order
of magnitude less accurate than using a characteristic function (Eq. 6.11). To
summarize, PLIC will be used to compute volumes and integrals over volumes,
while mol2 will be used to compute surface areas.

6.3 Dimensionless numbers
A coarse characterization of the benchmark Simulations can be done by com-
puting non-dimensional numbers. This allows in particular to know how much
influence viscosity or surface tension have on the structure of the flow, amongst
other things. In all the benchmarks considered here several dimensionless num-
bers may be considered : the Reynolds number

Re =
Uref Lref
νref

(6.17)

that indicates whether a flow is dominated by viscous effects (Re → 0) or by
inertial effects (Re→ +∞), the Eötvös number

Eo =
‖ρ+ − ρ−‖ ‖ggg‖ Lref

σ
(6.18)

that indicates whether a steady bubble is maintained spherical because of
dominant capillary forces (Eo → 0) or if it is strongly affected by gravity
(Eo→ +∞), the Morton number

Mo =
‖ggg‖ µ4

+ |ρ+ − ρ−|
ρ2

+ σ
3

(6.19)

that gives an indication on the shape of a bubble rising in a column of fluid
[215], and the Atwood number

A =
|ρ+ − ρ−|
ρ+ + ρ−

(6.20)

that is the dimensionless number indicating the growth rate of Rayleigh-Taylor
instabilities (A → 0 indicates slowly growing instability, whereas A → 1 indi-
cates a fast growing instability). The dimensionless numbers relevant to each
case are summarized in Table 6.3. Most of these dimensional numbers use fluid
properties that can easily be read in the simulations’ parameters. The Reynolds
number, however, requires to choose a reference velocity Uref , which is much
less straightforward. The following of the present section hence presents and
justifies how the Reynolds number is calculated for each benchmark.

6.4. An Eulerian velocity-pressure solver to compare to 119

Reynolds number for the standing wave benchmark

In the standing wave benchmark, the velocity is decaying with time as viscous
effects damp the surface oscillations, and hence so does the Reynolds number.
Therefore, the average interfacial velocity at the time tflat when the fluid in-
terface first becomes flat is taken as the reference velocity Uref . Moreover, the
half wavelength is taken as reference length instead of full wavelength because
the shear occurs between both halves of the domain. Eventually, note that
for Prosperetti’s analytical solution (Eq. 6.45) to work, the kinematic viscosity
must be constant throughout the domain.

Re =
max
xxx∈Γ

(
‖uuu(tflat)‖

) λ
2

ν
(6.21)

Reynolds number for the Rising Bubble benchmark

In the case of the Rising Bubble benchmark, the Reynolds number describes
the balance between the inertial effects of the bubble at steady state (constant
rising velocity) in relation to the friction caused by the surrounding fluid. The
kinematic viscosity in the interior region influences whether the bubble behaves
as a solid or not and does not describe the friction effects. Instead, it is the
viscosity of the exterior region that is representative of the friction caused by
the surrounding fluid. Hence, the reference velocity Uref is the final rising
velocity of the bubble uuuc while the reference kinematic viscosity is thee of the
surrounding fluid

Re =
‖uuu−c ‖ d
ν+

(6.22)

Reynolds number for the Rayleigh-Taylor benchmark

In the case of the Rayleigh-Taylor benchmark, the interface is originally still
then the heavier phase penetrates the lighter phase by gravity at increasing
velocities. Hence the Reynolds number increases with time. Hence the number
taken in (Table 6.3) is the Reynolds number at time t = 0.9, for the penetrating
phase i.e. the heavier phase. Hence the velocity is measured at the lowest
interface point and the kinematic viscosity is the one of the surrounding fluid
i.e. the lighter phase. Additionally, the reference length is the wavelength of the
initial perturbation, which also corresponds to the wavelength of the generated
fluid structures.

Re =

∥∥∥∥uuu
(

min
xxx∈Γ

xxx

)∥∥∥∥ λ

ν−
(6.23)

6.4 An Eulerian velocity-pressure solver to com-
pare to

The performance of the VPM solver developed in this thesis is compared to
the performance of a more traditional Eulerian velocity-pressure solver for in-

120 Chapter 6. Numerics and solver validation

compressible flows. This solver will be named “VeloGrid”. It works on the
momentum equation expressed in the Eulerian frame of reference

∂uuu

∂t
+ (uuu · ∇)(uuu) = − ∇p

ρ
+ ggg +

1

ρ
∇·
(
µ
(
∇uuu+∇uuuT

))
+ FFFΓ (6.24)

which it discretizes using finite differences on a Cartesian grid.
The incompressibility condition ∇·uuu = 0 is satisfied by using a velocity

projection method which operates in three steps. Firstly, the pressure p is
assumed constant within the time step

p(t) = pn ∀t ∈]tn, tn+1[(6.25)

and based on that assumption the momentum equation is integrated over a
time step

uuu∗ n+1 ← uuun +

ˆ tn+1

tn

∂uuu∗

∂t
dt (6.26)

In other words, the unprojected velocity field uuu∗ is the solution of the initial
value problem

∂uuu∗

∂t
+ (uuu∗ · ∇)(uuu∗) = − ∇p

n

ρ
+ ggg + FFFΓ +

1

ρ
∇·
(
µ
(
∇uuu∗ +∇uuu∗T

))

(6.27a)

uuu∗(tn) = uuu(tn) (6.27b)

whose equation (Eq. 6.27a) differ from the momentum equation (Eq. 6.24)
solely by the fact that the pressure term is constant in time. Additionally, the
unprojected velocity field uuu∗ has the same boundary conditions than the actual
(solenoïdal) velocity field uuu. Secondly, the error in pressure δp := pn+1 − pn is
found by solving the elliptic problem

Find δp such that

∇·
(∇(δp)

ρ

)
=
∇·uuu∗ n+1

ht
in Ω

∇(δp) = 0 on ∂Ω

(6.28)

Eventually, using the pressure error δp, the velocity field uuu∗ is projected in the
space of solenoïdal fields uuu

uuun+1 ← uuu∗ n+1 − ht
ρ
∇(δp) (6.29)

Note that many projection methods exist. In particular, Brown et al. com-
pared several of them in their 2000 article [216]. Also, some projection methods
have been devised specifically for multiphase flows with mass density jumps
across the interface, such as the second-order method proposed by Puckett et
al. in 1997 [217]. Nevertheless, those advanced methods will not be considered,
and instead the simpler method described above will be used.

Eventually, it captures the interface location using the level set method,
which it solves on the grid. Details on the algorithm of VeloGrid can be read
in Appendix C.2.

6.5. Numerical parameters of the solver 121

6.5 Numerical parameters of the solver

Both the VPM and VeloGrid solvers use the following parameters:

• The time step ht is adaptive, and its value is changed from a time step
to the other such that both Lagrangian CFLs (the one based on rotation
and the one based on strain) as well as the mesh Fourier number are
below 0.1. The increase in the time step value is capped by 10%. In the
case of the VeloGrid, the Lagrangian CFL is replaced by the CFL.

• The smeared fluid properties are mollified over a half-thickness ε equal to
8 grid cells

• The local level set method uses a mask half-thickness of 14 grid cells.
This is actually larger than the minimum value of 11, but was chosen so
for safety.

• The remeshing is performed at an adaptative frequency such that one
remeshing is performed every 0.1

max(LCFL) .

• The level set field is reinitialised when the level set field is detected as
being too distorted using the method described in section 3.2.6.

Moreover, Velogrid and the elliptic variant of VPM both use the GMRES
solver of the Hypre library for their elliptic equations on pressure. On the other
hand, the parabolic variant of VPM uses a FFT solver based on the FFTW
library. Recall that FFT solvers can only be used on equations with constant
coefficients, hence the use of GMRES for equations with variable coefficients.

6.6 Numerical investigations

Previous chapters have discussed several numerical phenomena, some of which
are to be tested on the benchmarks that were just introduced. Those results
are therefore gathered in the present section.

6.6.1 Choice of level set reinitialization strategy

The influence of the choice of the criterion triggering reinitialization discussed in
section 3.2.6 is shown in Figure 6.5 for the first Rayleigh-Taylor benchmark (see
section 6.9). More specificly, it shows results of the Rayleigh-Taylor benchmark
at t = 1.0 using several level set reinitialization criteria. As can be seen, both
reinitialising every 50 time steps (Fig. 6.5a) or reinitialising if the level set is too
distorted (Fig. 6.5c) yield similar results. On the other hand, reinitialising a
little bit every time step (Fig. 6.5b) is clearly inferior. Moreover, one drawback
of performing full reinitialisations every n time steps is that it is not obvious
which value to choose for n. The optimal value might be different depending on
the simulation considered, and it might even change within a single simulation.
For example, in the case of the Rayleigh-Taylor benchmark, one might want
larger values for n at the beginning of the simulation when the flow structure is

122 Chapter 6. Numerics and solver validation

−0.5 0.0
−1.5

−1.0

−0.5

0.0

(a) Full reinitialization
every 50 time steps

−0.5 0.0
−1.5

−1.0

−0.5

0.0

(b) Reinitialise over 2h
every time step

−0.5 0.0
−1.5

−1.0

−0.5

0.0

(c) Reinitialise when level
set field is too distorted

Figure 6.5: Influence of the reinitialization strategy, shown for the first
Rayleigh-Taylor benchmark at t = 1.0 on a 128x1024 grid. () is the
shape of the interface for the given reinitialization strategy obtained with the
VPM solver, while () is the reference data from Gomez [177].

still simple, and smaller values later in the same simulation when the geometry
of the fluid interface has become complex. On the other hand, the “if too
distorted” criterion does not require the user to set any parameter, and at the
same time guarrantees that the gradient of the level set is within 0.9 and 1.1.
For those reasons, the “if too distorted” criterion will be used in the rest of the
present thesis.

6.6.2 Choice of the surface tension term

Section 4.1 discussed the different possible formulations of the surface tension
term.

Figure 6.6 presents two simulations of the Rising Bubble B benchmark: one
(Fig. 6.6a) with the form of (Eq. 4.6) whereas the other (Fig. 6.6b) employs the
form of (Eq. 4.7). In both cases, the results obtained are nonphysical because
of a two-dimensional filtering that has been added at each time step. This
numerical behavior is further discussed in Section 4.1.1. However, despite being
unphysical, those simulations are interesting because they emphasize the grid
alignement of the fully expanded form (Eq. 4.7). In particular, it appears clearly
that the fully expanded formulation (Eq. 4.7) artificially aligns the interface
on the mesh, which is to be avoided. Hence the other, partially expanded

6.6. Numerical investigations 123

−0.5 0.0 0.5
−0.2

0.9

(a) Partially expanded variant
(Eq. 4.6)

−0.5 0.0 0.5
−0.2

0.9

(b) Fully expanded variant (Eq. 4.7)

Figure 6.6: Influence of the expression of surface tension term on simulation
output.

formulation (Eq. 4.6) will be preferred.

6.6.3 Appearance of trenches

Section 4.1.1 discusses the appearance of trenches due to isotropic 2D filtering.
Figure 6.8 displays the same simulation as in Figure 6.7b but for earlier times
at which the trenches are starting to develop themselves. On the first subfigure
(a) one can see a slight pinching of the interface at the end of the bubble’s skirt.
This pinching lengthens and initiates other pinches along itself (Fig. 6.8b) de-
velops. The same phenomena occurs for each of the new edges which leads to a
more (Fig. 6.8c) and more (Fig. 6.8d) complex patterns of trenches, which even-
tually leads to the nonphysical results commented in the previous paragraph
(Fig. 6.7b).

6.6.4 Choice of tangential filter for the level set field

Section 4.1.1 discussed three different expressions of tangential filter for the
level set field. The present section assesses the performance of each.

In order to emphasize the strengths and weaknesses of each of those three
tangential filters, the second Rising Bubble benchmark is run (see section 6.9)
until t = 0.1 with a filtering performed at each time step. The resulting in-
terfaces shapes are shown in Figure 6.9 for each of the three implementations.
Both divergence forms (Fig. 6.9b) (Fig. 6.9c) of the filter preserve mass much
better but at the cost of introducing nonphysical displacement of the interface.
Indeed, in the case of the normal-averaged divergence form (Fig. 6.9c) the bub-
ble has become squarish. On the other hand, the steps or wiggles introduced in
the interface by the face-computed normals divergence-form filter (Fig. 6.9b),
although much smaller are still problematic. Eventually, we note that the

124 Chapter 6. Numerics and solver validation

−0.5 0.0 0.5
−0.2

0.9

(a) Without filtering

−0.5 0.0 0.5
−0.2

0.9

(b) Third order two-
dimensional filtering

−0.5 0.0 0.5
−0.2

0.9

(c) Third order tangen-
tial filtering direct form,
(Eq. 4.21)

Figure 6.7: Influence of filtering on benchmark’s outputs, shown at t = 3.0 on
a 256x512 grid with a full reinitialization every 50 time steps.

−0.5 0.0 0.5
−0.1

0.8

(a) t = 2.0

−0.5 0.0 0.5
−0.1

0.8

(b) t = 2.1

−0.5 0.0 0.5
−0.1

0.8

(c) t = 2.2

−0.5 0.0 0.5
−0.1

0.8

(d) t = 2.3

Figure 6.8: Development of “trenches” caused by normal filtering

direct form filter (Fig. 6.9a) does preserve the spherical shape of the bubble
although it looses more mass than its divergence form competitors. Moreover
the bubble shape that it yields corresponds to the one obtained when using a
first order two-dimensional filter (Fig. 4.6b), which tends to indicate that the
direct-form filter does behave as the tangential variant of the two-dimensional
discrete filter. Therefore the direct-form tangential filtering is preferred.

The correctness of the direct-form tangential filter is also to be assessed on a
full simulation. For that purpose, the second Rising Bubble benchmark is run,
but with a surface tension value set to zero. Setting it to zero allows to compare
with the non-filtered variant of the solver, which cannot handle surface tension.
The results are shown in Figure 6.7. This same figure has been used before
to show the nonphysical results obtained with the standard two-dimensional
filter (Fig. 6.7c). Note that the solver using the tangential filter is not subject
to the development of trenches (Fig. 6.7c). Moreover, the results obtained are
consistent with those obtained using the non-filtered solver (Fig. 6.7a).

6.6.5 Influence of missing term in Thirifay’s formulation

Section 4.2.1 presents Thirifay’s formulation for the viscous term of the vorticity
equation and points out that one term is missing. The present paragraph

6.6. Numerical investigations 125

−0.5 0.0 0.5
−0.5

0.0

0.5

(a) Tangential filtering,
direct form (Eq. 4.21)

−0.5 0.0 0.5
−0.5

0.0

0.5

(b) Tangential filtering,
divergence form

(Eq. 4.22a),
directly computed

normals

−0.5 0.0 0.5
−0.5

0.0

0.5

(c) Tangential filtering,
divergence form

(Eq. 4.22a),
normals as average

Figure 6.9: Tangential filtering methods shown in their respective first order
variants for the second Rising Bubble (see section 6.9) simulation on a 256x512
grid at t = 0.1

discusses the influence of this term on the results. Figure 6.10 compares the
results of a Rising Bubble A simulation obtained with Thirifay’s formulation
and the corrected formulation. As can be seen, Thirifay’s formulation does not
yield good results, indicating that the term it misses plays an important role
in the physics of the flow.

In this chapter, the code is validated over several benchmarks. First the
Zalesak and vortex-stretched bubble benchmarks are performed to test the
level set method. Secondly, the spurious current, oscillating wave benchmarks
are performed to test the implementation of the surface tension. Thirdly, the
full solver is tested over the Rising Bubble and Rayleigh-Taylor benchmarks.
Eventually the now validated solver will be used on simulations relevant to
user-cases of the nuclear industry.

6.6.6 Influence of under-relaxation on simulations’ out-
put

As stated previously, under-relaxing not only prevents the instability from de-
veloping but also damps physical oscillations of the velocity field. Previously
(see section 5.4.1) it has been conjectured that since buoyancy effects are slowly
changing in time, the under-relaxation will have little to negligible effects on
the flow field. The present section assesses this statement.

To do so, the first rising bubble benchmark (see section 6.9) is run using
the VPM solver with different under-relaxation coefficient values. The outputs
can then be compared to observe the influence of under-relaxation. This sim-
ulation has a moderate mass density ratio of 10, for which under-relaxation is
unnecessary. This is done on purpose so as to assess the influence of a wide
range of under-relaxation coefficients : 1, 1/2, 1/4, 1/10. The time integrator
used here is Runge-Kutta 3 D.4. Otherwise, the same parameters are used as
in the first rising bubble benchmark (see section 6.9).

126 Chapter 6. Numerics and solver validation

0 1 2 3 4

t

0.0

0.1

0.2

0.3
u

(a) Ascension velocity

0 1 2 3 4

t

0.850

0.875

0.900

0.925

0.950

0.975

1.000

|∂
Ω

−
(t
)|

|∂
Ω

−
(t
=
0
)|

(b) Sphericity

−0.4 0.0 0.4

0.4

0.8

(c) Bubble shape at t = 3.0

0 1 2 3 4

t

0.995

1.000

1.005

|Ω
−
(t
)|

|Ω
−
(t
=
0
)|

(d) Mass conservation

Figure 6.10: Influence of the viscous term definition on the Rising Bubble
benchmark. Original Thirifay definition (), form (Eq. 4.37) (),
form (Eq. 4.38) (), form (Eq. 4.36) () and reference from Hysing
et al. [208].

Figure 6.11 shows the shape of the bubble Ω− at t = 3 as well as three crite-
ria that are quantified measures of the simulation’s quality: ascension velocity
defined as the average vertical velocity over the bubble’s volume

uc =
1

|Ω−|

ˆ
Ω−

(uuu · ê̂êey) dx, (6.30)

the sphericity defined as the ratio between the perimeter of the bubble ∂Ω−

and the perimeter of a circular bubble of equal volume ∂Beq, and the volume
conservation which is the ratio between the bubble’s current volume and its
initial volume

It is obvious from the plots (Fig. 6.11) that the under-relaxation coefficients
have had little influence on the outputs of the simulation. The only visible
change that can be seen is on the sphericity criterion (Fig. 6.11b) for very small
under-relaxation values. And still, the sphericity criterion is very sensitive, in
practice the plots of the bubble’s shape seem to overlap (Fig. 6.11c).

6.6. Numerical investigations 127

0 1 2 3 4

t

0.0

0.1

0.2

0.3

u
c

(a) Ascension velocity

0 1 2 3 4

t

0.900

0.925

0.950

0.975

1.000

|∂
Ω

−
(t
)|

|∂
B

e
q
(Ω

−
)|

(b) Sphericity

−0.4 0.0 0.4
0.4

0.8

(c) Bubble shape at t = 3.0

0 1 2 3 4

t

0.990

0.995

1.000

1.005

1.010

|Ω
−
(t
)|

|Ω
−
(t
=
0
)|

(d) Volume conservation

Figure 6.11: Influence of under-relaxation coefficient on a rising bubble simu-
lation output. α = 1.0 (), 0.5 (), 0.25 () and 0.1 ().
Results are compared to Hysing’s [208] ()

128 Chapter 6. Numerics and solver validation

6.6.7 Comparison of elliptic and parabolic vorticity solvers
The vorticity equation

Dω

Dt
= − ∇p

ρ
× ∇ρ

ρ
+ ∇×

(
1

ρ
∇·τττ

)
+ ∇×FFF s . (6.31)

embeds a pressure-dependent term, but does not provide a way to determine
this pressure directly. Instead, the momentum equation on velocity is used

Duuu

Dt
= − ∇p

ρ
+

1

ρ
∇·τττ + FFF s on Ω (6.32)

It can be employed in two ways. So far in this thesis, it has been used to
substitute the pressure gradient in the baroclinic termfrom

Dω

Dt
=

(
Duuu

Dt
− ggg
)
× ∇ρ

ρ
+

1

ρ
∇× (∇·τττ) + ∇×FFF s . (6.33)

However, it can also be used to determine pressure through the resolution
of an elliptic problem, and then use this pressure field directly in the vorticity
equation

Find p s.t.

∇·
(
∇p
ρ

)
= − D

Dt
(∇·uuu)

︸ ︷︷ ︸
=0

+ ∇·
(

1
ρ ∇·τττ

)
+ ∇·FFF s on Ω

∇p · n̂̂n̂n = 0 on ∂Ω

(6.34a)

Inject p in vorticity eq.
Dω

Dt
= − ∇p

ρ
× ∇ρ

ρ
+ ∇×

(
1

ρ
∇·τττ

)
+ ∇×FFF s .

(6.34b)

The first approach (Eq. 6.33) will be refered to as the parabolic problem, and
the second (Eq. 6.34) as the elliptic problem. Both approaches have strengths
and weaknesses. The general accuracy of both approaches is now studied and
compared. Following that, some general caracteristics of both approaches will
be summarized.

Figure 6.12 compares the results of the elliptic and parabolic solvers on
the Rising Bubble A benchmark. As can be seen both yield almost identical
results. Only a very slight shift in sphericity can be observed at times around
and beyond t = 3.0 (Fig. 6.12c), and all other indicators including ascension
velocity (Fig. 6.12b) and mass conservation (Fig. 6.12e) are undistinguishable.
Also no observable difference can be seen on the bubble itself (Fig. 6.12a).

Figure 6.13 shows the results of the elliptic solver for the Rising Bubble B
benchamrk and compares it to the results obtained with the parabolic VPM
and the reference from Hysing et al. [208]. Figure 6.14 presents the time-
evolution of the bubble at four different times. Unlike the Rising Bubble A
benchmark, the elliptic variant of the VPM solver performs poorly whereas
the parabolic version performs well. Indeed, the shape of the bubble is very

6.6. Numerical investigations 129

−0.4 0.0 0.4
0.4

0.8

(a) Bubble at t = 3.0.

0 1 2 3 4

t

0.0

0.1

0.2

0.3

u

(b) Ascension velocity

0 1 2 3 4

t

0.900

0.925

0.950

0.975

1.000
|∂
B

e
q
(Ω

−
(t
))
|

|∂
Ω

−
(t
)|

(c) Sphericity

0 1 2 3 4

t

0.0

0.2

0.4

0.6

0.8

y

(d) Vertical position of bubble

0 1 2 3 4

t

0.990

0.995

1.000

1.005

1.010

|Ω
−
(t
)|

|Ω
−
(t
=
0
)|

(e) Volume conservation

Figure 6.12: Results of the elliptic VPM method on the Rising Bubble A
benchmark. Shows the results of the elliptic variant of the VPM solver ()
and of its parabolic version () against reference data by Hysing et al.
[208] () .

130 Chapter 6. Numerics and solver validation

−0.5 0.0 0.5
0.0

0.5

1.0

(a) Bubble at t = 3.0. The reference curve () is an average of the three
slightly different results from Hysing et al. 2009 [208].

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

u
c

(b) Ascension velocity

0 1 2 3
t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

|∂
B

eq
(Ω

−
(t
))
|

|∂
Ω

−
(t
)|

(c) Sphericity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y c

(d) Vertical position of bubble

0 1 2 3 4

t

0.990

0.995

1.000

1.005

1.010

(e) Volume conservation

Figure 6.13: Results of the Rising Bubble B benchmarks. () is the
elliptic VPM solver, () the parabolic VPM solver, and () is the
reference data from Hysing et al. 2009 [208].

6.6. Numerical investigations 131

−0.5 0.0 0.5
−0.5

1.5

(a) t = 0.0

−0.5 0.0 0.5

(b) t = 1.0

−0.5 0.0 0.5

(c) t = 2.0

−0.5 0.0 0.5

(d) t = 3.0

Figure 6.14: Rising Bubble B simulation (ρ+/ρ− = 1000) using the elliptic
VPM solver.

different (Fig. 6.12a), and so is its ascention velocity (Fig. 6.12b) which is about
half of the referennce value. Note also that the shape of the interface of the
bubble is flatter at certain angles. This behaviour has been traced back to the
viscous term of the vorticity equation. Whereas it is defined as

1

ρ
∇× (∇·τττ) (6.35)

in the case of the parabolic solver (Eq. 6.33), it is

∇×
(

1

ρ
∇·τττ

)
(6.36)

for the elliptic solver (Eq. 6.34). In other words, the viscous term of the elliptic
solver embeds the mass density within the curl operator. In the case of the
Rising Bubble B benchmark, there is a ratio of a thousand between the mass
density within the bubble and that of the surrounding fluid. Therefore the 1/ρ
function behaves as a steep and offsetted step function. This appears to be the
root cause of the disappointing results observed in Figures 6.30 and 6.13.

Figure 6.16 shows the results obtained for the Rising Bubble C benchmark
on a fine mesh (512x1024). A full time-evolution of the simulation is visible on
Figure 6.15. It is an intermediate simulation that has a mass density ratio of
20. It appears that both the results obtained using the parabolic and elliptic
variants of the VPM agree well with each other. This confirms the influence of
the mass density on the quality of the results.

In complement to those results, and their implications on the accuracy of
both methods, some general caracteristics are now pointed out.

The main advantage of the parabolic problem is that it is much faster to
compute, since it does not require an iterative solver. Additionnally, it allows

132 Chapter 6. Numerics and solver validation

−0.5 0.0 0.5
−0.5

1.5

(a) t = 0.0

−0.5 0.0 0.5

(b) t = 1.0

−0.5 0.0 0.5

(c) t = 2.0

−0.5 0.0 0.5

(d) t = 3.0

−0.5 0.0 0.5

(e) t = 4.0

Figure 6.15: Rising Bubble C, shown with the elliptic variant of the VPM
solver.

−0.5 0.0 0.5

0.0

0.5

1.0

(a) VPM elliptic

−0.5 0.0 0.5

0.0

0.5

1.0

(b) VPM parabolic

−0.5 0.0 0.5

0.0

0.5

1.0

(c) VeloGrid

Figure 6.16: Bubble at t = 4.0 on the Rising Bubble C benchmark.

to express the source terms of momentum in a simple and elegant way. On the
other hand, the elliptic method embeds several terms that describe the same
physical phenomena: for instance there is one viscous term in the equation on
pressure and one in the vorticity equation (note that the same argument can
be made for the surface tension term). This duplication of source terms not
only increases the numerical complexity of the method, but they also spark
additional interogations: can both terms interact with each other? If so, how?
Is there some additional care required in the numerical discretization due to
the existance of those two terms?

However, the parabolic problem also has one major drawback: the purpose
of the vorticity equation is to evaluate the time derivative of vorticity ∂ω

∂t , yet
its baroclinic term embeds the time derivative of velocity ∂uuu

∂t , which is directly
connected to ∂ω

∂t . Thus, in order to compute the time evolution of vorticity, one
uses a guess of the same information albeit expressed in terms of velocity. This

6.7. Validation of the VPM level set method 133

causes the numerical instability on the baroclinic term that was studied earlier
in Chapter 5. Besides the stability issue there also is a concern on accuracy:
how strongly does this coupling influence the accuracy of the resutlts?

To conclude, it appears that neither the parabolic nor the elliptic approaches
are ideal. The parabolic approach embeds a strong coupling on the time deriva-
tive of vorticity or velocity, while the elliptic approach has a complicated formu-
lation for its source terms of momentum. However, numerical simulations show
that the parabolic solver behaves better at high mass density ratios. Hence it
should be prefered over the elliptic variant of the VPM solver.

6.7 Validation of the VPM level set method
In this section and the following ones, the results of the benchmarks are pre-
sented and commented. Also additional information is given on the bench-
marks when necessary. In the present section, the performance of the level set
implementation of the VPM solver is assessed. Note that both benchmarks
enforce each a specific velocity field, hence the part of the solver integrating
the momentum equation is disabled.

Zalesak benchmark

The Zalesak benchmark performs a 360 degrees rotation of a bubble around an
axis. Figure 6.17 shows an example of such simulation: the bubble starts from
the top is initially shaped as a slotted disk (Fig. 6.17a), then it is moved by a
velocity field

u = ‖xxx‖ ê̂êeθ = −R sin(θ) ê̂êex + R cos(θ) ê̂êey (6.37)

corresponding to solid rotation (Fig. 6.17b) (Fig. 6.17c) with angle θ taken from
ê̂êex to ê̂êeρ. Eventually, it is brought back to its original location (Fig. 6.17d) and
the shape of the bubble is compared to the original shape (Fig. 6.17a).

Note that this velocity field crosses the domain boundary, which in the
case of the VPM code corresponds to advecting some particles from outside
the domain to inside it. Nevertheless, the flow of interest here is the one
around the Zalesak bubble. Therefore, a domain four times larger than usual
Zalesak benchmarks is used and the level set field is forcibly saturated beyond a
certain radius to the domain center. Eventually, the time step for the VeloGrid
simulations have been chosen such that CFL ' 0.55.

Figure 6.18 shows the shape of the interface after a 360 degrees rotation
around an axis, and compares it to its initial shape before the rotation ()
. The left subfigure compares the VPM solver against the VeloGrid solver,
whereas the right subfigure shows the influence of the remeshing frequency.

On the left subfigure (Fig. 6.18a), one can see that the VPM solver ()
preserved the interface much better than the VeloGrid solver (). In
particular, notice how the slot of the Zalesak disk and its circumference is
better preserved.

On the right subfigure (Fig. 6.18b), notice that the slot is better preserved
by the simulations with less frequent remeshing. Recall however, that the

134 Chapter 6. Numerics and solver validation

−0.5 0.0 0.5
−0.5

0.0

0.5

(a) t = 0

−0.5 0.0 0.5

(b) t = 2π
3

−0.5 0.0 0.5

(c) t = 4π
3

−0.5 0.0 0.5

(d) t = 2π

Figure 6.17: An example of Zalesak simulation, shown with VPM and a remesh
every time step.

remeshing is a necessary operation that needs to be performed once in a while
in order to prevent Lagrangian distortion.

Vortex-stretched bubble (VSB)

In the vortex-stretched bubble benchmark, a circular bubble (Fig. 6.19a) is
carried away and stretched by a vortex flow (Fig. 6.19b) (Fig. 6.26d). Then,
the flow is reverted (Fig. 6.19d) such that the bubble takes its original form
(Fig. 6.19e). The advecting velocity field is such that the corresponding stream
function is

ψ(xxx, t) :=
U L

π
cos2

(
π
x

L

)
cos2

(
π
y

L

)
cos

(
π

t

tend

)
(6.38)

with U = 1 and L = 1. In other words, the velocity field is defined as

uuu(xxx, t) = U

(
− cos2

(
π
x

L

)
cos

(
π

y

L/2

)
ê̂êex

+ cos2
(
π
y

L

)
cos

(
π

x

L/2

)
ê̂êey

)
cos

(
π

t

tend

) (6.39)

6.7. Validation of the VPM level set method 135

−0.2 0.0 0.2
0.05

0.25

0.45

(a) Comparison of VPM ()
against VeloGrid (), with the
analytical solution as a reference
() . Performed on a 96x96 grid
(7.2 grid nodes over the disk’s radius).

−0.2 0.0 0.2
0.05

0.25

0.45

(b) Influence of remeshing fre-
quency: remeshed every 1 (),
2 () and 4 () time
steps, with the analytical solution as
a reference () .

Figure 6.18: Results of the Zalesak benchmark

−0.5 0.0 0.5
−0.5

0.0

0.5

(a) t = 0.0

−0.5 0.0 0.5

(b) t = 2.0

−0.5 0.0 0.5

(c) t = 4.0

−0.5 0.0 0.5

(d) t = 6.0

−0.5 0.0 0.5

(e) t = 8.0

Figure 6.19: An example of Vortex-stretched bubble simulation, shown with
VPM with reinitialization.

Figures 6.20 and 6.21 show the results of the Vortex-stretched bubble bench-
mark. On each of those figures two stages of the same simulation are shown:
the left subfigure shows the bubble in its most stretched out form i.e. just be-
fore reversing the flow, and the right subfigure displays the shape of the bubble
after a full reversing of the flow and compares it to its original shape ()
. The reference data in the left subfigures is the self-convergence limit of the
solver and was obtained on a 512x512 mesh.

The first pair of figures (Fig. 6.20) compares the performance of the VPM
solver as compared to VeloGrid and to the self-convergence limit. Notice that
the VPM solver preserves the trailing tail of the bubble much better than
VeloGrid (Fig. 6.20a). After reversing the flow, it appears clearly that the VPM
solver preserved mass much better than VeloGrid (Fig. 6.21a). Notice also that
after reversing both VPM’s and VeloGrid’s bubbles are quite similarly shaped
(Fig. 6.21a).

The second pair of figures (Fig. 6.21) studies the influence of reinitialization

136 Chapter 6. Numerics and solver validation

on the results of the VPM solver. In practice, a simulation of the VPM with
reinitialization disabled () has been run. Notice on the plot before flow
reversing (Fig. 6.21a) that the trailing tail of the bubble is rounded in the
case of the reinitialized simulation (), whereas it is spiked in the non-
reinitialized case (). This artificial rounding of the bubble is hence a
consequence of the interface displacements caused by level set reinitialization.
On the same plot both bubbles are roughly of the same volume, although the
bubble in the non-reinitialized case seems of slightly smaller volume than in the
reinitialized case. This difference in volume is confirmed in the right subfigure
(Fig. 6.21b). In the latter, note also that the bubble of the non-reinitialized
case () preserved its rounded shape whereas it is more strongly distorted
in the reinitialized case () and no longer resembles an ellipsoid. Once
again this is a consequence of artificial interface displacement caused by level
set reinitialization.

Eventually, a convergence study is conducted to assess the convergence
of the level set particle method on the vortex-stretched bubble benchmark.
More specifically, it is assessed whether the shape of the interface at the final
time point t = 8.0 converges to the analytical solution as the grid resolution
increases.

To do so, the first half of the simulation (bubble stretching) is performed us-
ing marker particles, then the level set field is reconstructed from those marker
particles, and eventually the level set particle method is used to perform the
second half of the simulation (bubble unstretching). Beside reducing the sim-
ulation cost, performing the first half of the simulation using marker particles
allows to better capture the distortions generated by the level set particle meth-
ods. Indeed, since this particular benchmark uses a velocity field that reverts
itself, it is well possible that some of the distortions generated in the first half
of the simulation are being cancelled by identical but opposite distortions ap-
pearing in the second half. Instead, by starting from the half of the simulation
using a “trusted” level set field, all distortions generated in the course of the
simulation will appear at the final time.

Initially, The marker particle algorithm seeds 1000 particles XXXp on the
interface, then those particles are advected by time-integrating the ODE

∂XXXp

∂t
= uuu(XXXp) (6.40)

using an Euler-Explicit scheme and a time step value ht of 1e−6. In equation
6.40, the velocity field uuu(XXXp) is known analytically from equation 6.39. Of
course higher-order time integration schemes could have been chosen, yet the
Euler-Explicit time integrator yields sufficiently accurate and fast results for
that time step value. Indeed, before using the results from the marker parti-
cles half-simulation, it has been shown that a full marker particle simulation
using those parameters preserves very well the shape of the bubble. This is
demonstrated on Figure 6.22b. The latter shows the interface shape at the ini-
tial condition () , and its shape after stretching and unstretching using
the marker particles method (). Both curves superpose each other very

6.7. Validation of the VPM level set method 137

−0.5 0.0 0.5
−0.5

0.0

0.5

(a) t = 4 = tend
2

−0.3 0.0 0.3
0.05

0.25

0.45

(b) t = 8 = tend

Figure 6.20: Vortex-stretched bubble benchmark: comparison of VPM
() against VeloGrid (), with the self-convergence solution
() as reference.

−0.5 0.0 0.5
−0.5

0.0

0.5

(a) t = 4 = tend
2

−0.3 0.0 0.3
0.05

0.25

0.45

(b) t = 8 = tend

Figure 6.21: Influence of reinitialization on the Vortex-stretched bubble bench-
mark: comparison of VPM with reinitialization () to VPM without reini-
tialization (), with the self-convergence solution () as reference.

well. Therefore, it is trusted that the interface shape obtained at time t = 4.0
(Fig. 6.22a) using the same method and identical parameters is also very close
to the analytical result.

The level set field is reconstructed from the marker particles in the following
way: (i) each segment connecting two consecutive marker particles generates a
level set field in the normal direction equal to the distance to the segment, (ii)
where no level set value has yet been set by the segments, the value chosen is the
distance to the closest marker particle. The algorithm used is very inefficient
(O(N2) complexity) but sufficient for our needs.

The self-convergence result for the level set particle method is shown in Fig-
ure 6.23. The same parameters as for the benchmark itself have been used, ex-
cept that the time step value is chosen such that the Lagrangian CFL is around

138 Chapter 6. Numerics and solver validation

−0.5 0.0 0.5
−0.5

0.0

0.5

(a) t = 4 = tend
2

−0.3 0.0 0.3
0.05

0.25

0.45

(b) t = 8 = tend
The final interface shape ()
is compared to the initial condition
() .

Figure 6.22: Marker particles method used on the Vortex-stretched bubble
benchmark

0.1, and the remeshing frequency is adapted such that one remeshing is per-
formed every 0.1

LCFL time steps. Those parameters are close to the parameters
used in actual flow simulations. The plot shown has been obtained for a sim-
ulation without reinitialization on a 2048x2048 grid (Fig. 6.23a). An identical
result is obtained using reinitialization with a “reinitialize when level set is too
distorted” criterion (Fig. 6.23b). This particular grid resolution (2048x2048)
has been chosen because it showed no difference with results obtained using a
1024x1024 grid. As can be seen on Figure 6.23, the level set particle method
does not converge exactly to the analytical solution, yet the deviation is small.

Summary

The particle-based level set method embedded in the VPM solver yielded bet-
ter results than its grid-based counterpart embedded in the VeloGrid solver,
as noted previously by Hieber and Koumoutsakos in their 2005 work [18] on
particle-based level set methods. In particular, a self-convergence study on
the Vortex-Stretched Bubble has shown that the VPM method converged well,
even with the remeshing procedure. Those results were obtained by starting
the simulations from the most stretched-out form of the bubble, which was
obtained using marker particles.

More generally, the good results of the VPM method are explained by the
fact that the level set advection equation is a pure transport equation, which is
an ideal case for using Lagrangian methods. Indeed, while the VeloGrid solver
discretizes the advection term using finite differences, the VPM solver simply
keeps its Lagrangian level set function constant in time. Eventually, it was
noted that frequent remeshing and reinitialization deteriorates the accuracy of

6.8. Validation of surface tension 139

−0.3 0.0 0.3
0.05

0.25

0.45

(a) Without reinitialization

−0.3 0.0 0.3
0.05

0.25

0.45

(b) With reinitialization
(“reinitialize when too distorted”)

Figure 6.23: Self-convergence result using level set particle method. The final
interface shape at t = 8 () is compared to the initial condition ()
.

−0.5 0.0 0.5
−0.5

0.0

0.5

Figure 6.24: Initial condition of the static bubble benchmark

the method.

6.8 Validation of surface tension

The performance of the VPM solver in pure level set benchmark is very appeal-
ing. However it remains to be assessed whether the VPM can bring comparable
improvements in actual full-flow solvers. Yet, before moving to this topic, the
resolution of surface tension effects must first be validated. This is performed
firstly on a static benchmark, then on a dynamic case.

140 Chapter 6. Numerics and solver validation

Surface tension on a circular bubble

Starting from an excatly circular bubble (Fig. 6.24), spurious currents appear
that displace the interface away from its circular shape. The magnitude of this
error is measured either through the intensity of the spurious currents, or by
evaluating the difference in the pressure jump accross the interface with the
one given by the Young–Laplace equation

δp = σ κ (6.41)

where δp is the pressure jump across the interface, σ is the surface tension
coefficient and κ is the curvature of the interface.

In the case of a vorticity solver however, and unlike a velocity-pressure
solver, the pressure does not appear directly in the equations. Although it can
still be computed through post-processing, it is not a meaningful measure of
the accuracy of a vortex method. Therefore, only the intensity of the spurious
currents is studied here.

Since the bubble is initially spherical, all currents that may appear are
spurious currents that attempt at bringing the bubble to a non-spherical shape
that is closer to the “numerical” equilibrium shape of the bubble. The intensity
of those currents are measured using three different norms

E1(q) :=
1

|Ωhhh|
∑

xxxi,j∈Ωhhh

‖qi,j‖ (6.42a)

E2(q) :=
1√
|Ωhhh|

√ ∑

xxxi,j∈Ωhhh

‖qi,j‖2 (6.42b)

E∞(q) := max
xxxi,j∈Ωhhh

‖qi,j‖ (6.42c)

where |Ωhhh| is the cardinality of the finite set Ωhhh, in other words it is the
number of nodes xxxi,j on the grid Ωhhh. Each of these norms is actually a vector
norm that has been normalized such that the number of points of the mesh
is of no influence on the measure’s outputted value. A consequence of this
normalization, as can be seen on Figure 6.25 is that

E∞(q) < E2(q) < E1(q) (6.43)

whereas
‖q‖1 < ‖q‖2 < ‖q‖∞ (6.44)

Two cases are considered: a case with a mass density ratio ρ+/ρ− of one, and
a case with a ratio of 1000, following the same parameters as used respectively
by [147] and [203]. Error convergence results are shown for each case on figures
6.25a and 6.25b respectively. In both cases, a steady convergence towards zero
is observable for all three measures, with a second-order decay rate O(h2) for
E∞. Hence the implementation of the surface tension term is consistent in the
steady case.

6.8. Validation of surface tension 141

10−4 10−3 10−2 10−1

hx

10−6

10−5

10−4

10−3

10−2

10−1
E

(a) ρ−/ρ+ = 1

10−4 10−3 10−2 10−1

hx

10−6

10−5

10−4

10−3

10−2

10−1

E
(b) ρ−/ρ+ = 1000

Figure 6.25: Convergence of spurious currents for the static bubble benchmark.
Three measures of error in uuu1−uuu0

t1−t0 are shown: E1 (), E2 () and
E∞ ().

Standing wave

The standing wave benchmark considers the damping of oscillations of an al-
most horizontal fluid interface subject to surface tension. Starting from a per-
turbated flat interface (Fig. 6.26a) (Fig. 6.26b), the latter is put in motion by
surface tension (Fig. 6.26c), thus leading to an oscillatory behavior (compare
Figures 6.26b, 6.26d, and 6.26f) that is damped by viscosity (compare Figures
6.26b and 6.26f). An exact solution of the problem has been found by Pros-
peretti first for a one-phase free surface problem [218], then on a two-phase
fluid interface problem [207]. Indeed, this article proves that the amplitude a
of the wave is given in time as

a(t) =
4(1− 4β)(νk2)2

8(1− 4β)(νk2)2 + ω2
0

a0 erfc
(√

νk2 t
)

+

4∑

i=1

zi
Zi

(
a0 ω

2
0

z2
i − νk2

− u0

)

(6.45)
where a0 is the initial amplitude, u0 the initial velocity, zi are the four complex
roots to the quartic equation

z4 − 4β
√
νk2 z3 + 2 (1−6β) νk2 z2 + 4 (1−3β) (νk2)3/2 z + (1−4β)(νk2)2+ω2

0 = 0
(6.46)

Zi are four coefficients defined as

Z1 := (z2 − z1) (z3 − z1) (z4 − z1) (6.47a)
Z2 := (z3 − z2) (z4 − z2) (z1 − z2) (6.47b)
Z3 := (z4 − z3) (z1 − z3) (z2 − z3) (6.47c)
Z4 := (z1 − z4) (z2 − z4) (z3 − z4) (6.47d)

142 Chapter 6. Numerics and solver validation

−3.14 0.00 3.14
−3.14

0.00

3.14

(a) Initial condition, shown on the full domain (t = 0.0).

−3.14 0.00 3.14
−0.1

0.0

0.1

(b) t = 0.0

−3.14 0.00 3.14

(c) t = 3.0

−3.14 0.00 3.14

(d) t = 4.0

−3.14 0.00 3.14

(e) t = 4.5

−3.14 0.00 3.14

(f) t = 5.5

Figure 6.26: An example of standing wave simulation, the y-axis has been
zoomed-in to emphazise the oscillations.

β is defined as
β =

ρ+ ρ−
(ρ+ + ρ−)2

(6.48)

using as reference time scale the inverse of the frequency of irrotational waves
in deep water ω0 obtained through the dispersion relation

ω2 =
ρ− − ρ+

ρ− + ρ+
k g + k3 σ

ρ− + ρ+
(6.49)

where σ is the surface tension, ρ the mass density of the heavier fluid and k
the wave number of the standing wave.

The number obtained through the amplitude equation (Eq. 6.45) is hence a
complex number but its imaginary part happens to be zero. Also the amplitude
equation (Eq. 6.45) is valid for any shape of the interface. In the case of our
benchmark a sinusoïd of initial amplitude a0 is used.

This benchmark is run in two cases: using equal mass densities ρ+/ρ− = 1,
and in a high mass density ratio configuration ρ+/ρ− = 1000. Figures 6.27 and
6.28 show the results for each of those cases respectively. For each figure, the
left subfigure shows the time-evolution of the wave’s amplitude and compares
it with the analytical result () , while the right subfigure shows the
absolute error in wave amplitude. In other words, the left subfigure is useful to

6.8. Validation of surface tension 143

have a qualitative evaluation of the method’s performance, whereas the right
subfigures gives a more quantitative information.

Firstly, note that for both mass density ratios (Fig. 6.27a) (Fig. 6.28a), the
solver’s amplitude predictions converges to the analytical solution. Similarly,
the absolute error tends to converge to zero (Fig. 6.27b) (Fig. 6.28b). Also note
that in the low mass density ratio case (Fig. 6.27b), the amplitude error is
roughly divided by four every time the grid’s resolution is doubled. Hence this
scheme appears to be second-order. On the other hand, the convergence seems
slower in the high mass density case (Fig. 6.28b).

Summary

Both steady and dynamic benchmarks validate the consistency of the method in
handling surface tension effects. The static convergence appears to be second-
order (at least in the L∞ norm). On the other hand, the convergence in the
dynamic case is also of second-order for low mass density ratios, but it is lower
for higher density ratio.

144 Chapter 6. Numerics and solver validation

0 5 10 15 20

t∗

−1.0

−0.5

0.0

0.5

1.0

y 0
/y

0
(t

=
0)

(a) Amplitude

0 5 10 15 20

t∗

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

y
0
−
y
0
,r

e
f

y
0
(t
=
0
)

(b) Amplitude error

Figure 6.27: Standing wave ρ−/ρ+ = 1 case shown for three mesh refinements:
32x32 (), 64x64 () and 128x128 (). Those three curves are
compared to the analytical reference () .

0 100 200 300 400

t

−1.0

−0.5

0.0

0.5

1.0

y 0
/y

0
(t

=
0)

(a) Amplitude

0 100 200 300 400

t

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

y
0
−
y
0
,r

e
f

y
0
(t
=
0
)

(b) Amplitude error

Figure 6.28: Standing wave ρ−/ρ+ = 1000 case. Same legend as in Figure 6.27.

6.9. Validation of full solver 145

6.9 Validation of full solver

Now that the interface capturing and surface tension implementations of the
VPM solver has been assessed, the present section continues that study using
complex flow benchmarks. First the Rising Bubble benchmark is considered,
then the Rayleigh-Taylor benchmark is studied.

Rising Bubble

The Rising Bubble benchmark is run in three variants : case A which is a
low mass density ratio simulation (ρ+/ρ− = 10) (Fig. 6.29), case B which has
a high mass density ratio (ρ+/ρ− = 1000) (Fig. 6.30), and case C that has
an intermediate mass density ratio (ρ+/ρ− = 20). The difficulty with two-
dimensional Rising Bubbles is that they do not occur naturally. Hence there is
no experimental studies to validate against. Instead both cases are compared
with numerical results from Hysing et al. 2009 [208]. This work is interesting
in that it compares the self-convergence limit of three distinct finite-element
solvers (TP2D, FreeLIFE and MooNMD) developed by three different labo-
ratories (TÜ Dortmund, EPFL Lausanne and Uni Magdeburg respectively).
TP2D and FreeLIFE are Eulerian solvers and capture the fluid interface using
the level set method. On the other hand MooNMD is based on an Arbitrary
Lagrangian-Eulerian paradigm, however in the case of their study it was used
as a fully Lagrangian method and the interface motion was tracked directly
by the moving mesh. For the later regular remeshing was performed when
necessary. Additionally, the output of three commercial CFD software (Ansys
Fluent, CFX and Comsol) are very briefly presented. The outputs of all solvers
agree well with one another, although in the Rising Bubble benchmark some
differences in the results can be noted for large times. In the figures presented
in the present section (Fig. 6.32) (Fig. 6.33) all three solvers are always repre-
sented by the same gray line () . Indeed, what is relevant is not to
compare the results of those three solvers between themselves, but merely to
have an idea of the deviation between their output so as to better appreciate
how different the VPM solver behaves.

Figures 6.32 and 6.33 presents the results for both cases of the Rising Bubble
benchmark. In both cases, five plots are shown. Firstly, the shape of the
bubble at t = 3 is compared qualitatively (a), then plots of the quantitative
criteria previously defined are shown: ascension velocity (b), sphericity (c),
vertical position (d) and mass conservation (e). In each plots, the VPM solver
is compared to the VeloGrid solver and reference results from Hysing et al’s
work [208].

In the case of the first Rising Bubble benchmark (Fig. 6.32) all solvers
show a very good agreement. Only the sphericity displays a visible difference
(Fig. 6.32c). However, note that it is a very sensitive criterion. In practice, the
shape of the bubbles is actually very similar (Fig. 6.32a)

In the case of the second Rising Bubble benchmark (Fig. 6.33), there is
a visible difference between solvers although the agreement remains good.
Indeed, on one hand there is some deviation in ascension velocity beyond
t = 1.7 (Fig. 6.33b), which translates in a slight difference in vertical position

146 Chapter 6. Numerics and solver validation

−0.5 0.0 0.5
−0.5

1.5

(a) t = 0.0

−0.5 0.0 0.5

(b) t = 1.0

−0.5 0.0 0.5

(c) t = 2.0

−0.5 0.0 0.5

(d) t = 3.0

Figure 6.29: Rising Bubble A simulation (ρ+/ρ− = 10) using the parabolic
VPM solver.

−0.5 0.0 0.5
−0.5

1.5

(a) t = 0.0

−0.5 0.0 0.5

(b) t = 1.0

−0.5 0.0 0.5

(c) t = 2.0

−0.5 0.0 0.5

(d) t = 3.0

Figure 6.30: Rising Bubble B simulation (ρ+/ρ− = 1000) using the parabolic
VPM solver.

−0.5 0.0 0.5
0.0

0.5

1.0

(a) 256x512 mesh

−0.5 0.0 0.5
0.0

0.5

1.0

(b) 384x768 mesh

−0.5 0.0 0.5
0.0

0.5

1.0

(c) 512x1024 mesh

Figure 6.31: Convergence analysis on Rising Bubble B benchmark

6.9. Validation of full solver 147

(Fig. 6.33d). Note however, that both the VeloGrid and VPM solvers share
the same tendency in terms of ascension velocity. Concerning the sphericity,
the deviation between VPM and reference solvers is negligible given the differ-
ence between the outputs of the three solvers (Fig. 6.33c). Eventually, there is
a good agreement in the general shape of the bubble (Fig. 6.33a): all solvers
show a bubble with a skirt. The length of the skirt tends to be slightly longer
for the VPM and VeloGrid solver, while its height is shorter for those solvers.

Eventually, volume preservation is more or less the same for both the VPM
and VeloGrid solvers on both cases (Fig. 6.32e) (Fig. 6.33e), with a slight edge
in favour of the VPM solver.

Additionally, a convergence study has been performed on the Rising Bubble
B benchmark. Results are shown in Figure 6.31. As can be seen, although
the general shape of the bubble is similar between the results of the VPM
simulations and the results obtained by Hysing et al. [208], the VPM solver
does not converge exactly to the same solution.

148 Chapter 6. Numerics and solver validation

−0.4 0.0 0.4
0.4

0.8

(a) Bubble at t = 3.0.

0 1 2 3 4

t

0.0

0.1

0.2

0.3

u

(b) Ascension velocity

0 1 2 3 4

t

0.900

0.925

0.950

0.975

1.000

|∂
B

e
q
(Ω

−
(t
))
|

|∂
Ω

−
(t
)|

(c) Sphericity

0 1 2 3 4

t

0.0

0.2

0.4

0.6

0.8

y

(d) Vertical position of bubble

0 1 2 3 4

t

0.990

0.995

1.000

1.005

1.010

|Ω
−
(t
)|

|Ω
−
(t
=
0
)|

(e) Volume conservation

Figure 6.32: Results of the Rising Bubble A benchmark. Shows the results of
the VPM solver () and of the VeloGrid solver () against reference
data by Hysing et al. [208] () .

6.9. Validation of full solver 149

−0.5 0.0 0.5
0.0

0.5

1.0

(a) Bubble at t = 3.0. The reference curve () is an average of the three
slightly different results from Hysing et al. 2009 [208].

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

u
c

(b) Ascension velocity

0 1 2 3
t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

|∂
B

eq
(Ω

−
(t
))
|

|∂
Ω

−
(t
)|

(c) Sphericity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y c

(d) Vertical position of bubble

0 1 2 3 4

t

0.990

0.995

1.000

1.005

1.010

(e) Volume conservation

Figure 6.33: Results of the Rising Bubble B benchmarks. Same legend as in
Figure 6.32

150 Chapter 6. Numerics and solver validation

Rayleigh-Taylor instability

The Rayleigh-Taylor studies the time-evolution of the Rayleigh-Taylor instabil-
ity, and in particular the shape of the “finger” of heavier fluid that penetrates
the lighter fluid. The problem is initialized with a heavier phase in the top half
of the domain, and a lighter phase in other half. In order for the system to
be unconditionally unstable, and hence to allow for the instability to grow, an
initial perturbation must be introduced. This takes the form of a displacement
of the interface, which is positioned at

y(x) = −A cos

(
2π

L

λ

L
x

)
(6.50)

where A is the amplitude of the perturbation, and λ its wavelength.
As stated before, Gomez et al’s 2005 work [177] will be used as a reference.

This choice is motivated by the fact that the parameters used there are also used
in other articles from different authors. Indeed, Rayleigh-Taylor simulations
have been used for benchmarking purposes since the eighties at the latest.
However, most of the time the sets of parameters are unique to a single work.
Additionally, Gomez et al’s work consisted in assessing the performance and
accuracy of a numerical finite difference method with adaptive quad-tree mesh
in the vicinity of the interface. Hence the simulation results that were achieved
are very accurate.

Figures 6.34 and 6.35 show the results of the Rayleigh-Taylor benchmarks.
Here only the shape of the interface can be qualitatively compared, as there is
no quantitative criterion. Indeed, each figure shows the interface at different
times. The plots shows the results of the VPM and VeloGrid solvers, as well
as reference data from Gomez et al. [177].

On each case of the benchmarks, both VPM and VeloGrid solvers agree well
with the reference data. Note in particular, the fact that the VPM still shows
the fluid filament in Figure 6.34e whereas on the same plot it has vanished from
the VeloGrid results. This is surely a consequence of the particle-based level
set method embedded in the VPM solver, but not in the VeloGrid solver.

Eventually, in both cases of the benchmark, it is difficult to tell which is
more accurate between the VPM and VeloGrid solvers.

6.9. Validation of full solver 151

−0.5 0.0

−1.5

−1.0

−0.5

0.0

0.5

(a) t = 0.6

−0.5 0.0

(b) t = 0.68

−0.5 0.0

(c) t = 0.8

−0.5 0.0

(d) t = 0.9

−0.5 0.0

(e) t = 1.0

Figure 6.34: Results for the Rayleigh-Taylor Case A benchmark. Shows the
results of the VPM solver () and of the VeloGrid solver () against
reference data by Gomez et al. [177] () .

−0.5 0.0

−1.5

−1.0

−0.5

0.0

0.5

(a) t = 0.9

−0.5 0.0

(b) t = 1.0

−0.5 0.0

(c) t = 1.1

−0.5 0.0

(d) t = 1.2

−0.5 0.0

(e) t = 1.3

Figure 6.35: Results for the Rayleigh-Taylor Case B benchmark. Same legend
as in Figure 6.34.

152 Chapter 6. Numerics and solver validation

Summary

Despite superior interface capturing capabilities (see section 6.7), the VPM
solver outputs results of similar accuracy than the VeloGrid solver in complex
flows. However, that can still be considered an achievement given the fact that
it is a novel solver (recall that multiphase VPM solvers are very uncommon).
In particular, improvements over the existing implementation might give it an
edge. That being said, the VPM passes all complex flow benchmarks, which is
an important realization.

Now that the VPM solver’s accuracy has been studied, its computational
efficiency must be considered. This is the object of the following section.

6.9.1 Computational efficiency

The computational efficiency of the VPM solver is evaluated on the first Rising
Bubble benchmark, and it is compared to that of the VeloGrid solver. Two
studies are performed. Firstly, the algorithmic complexity of the method is
considered, in order to see if the cost of the VPM method increases at the same
rate than that of the VeloGrid solver as grid refinement increases. Secondly,
VPM methods are known to be particularly advantageous on highly advective
flow. Hence the cost of the VPM method is measured in several variants of the
same simulation, some being more viscous or more advective than others.

For this study, the surface tension term has been disabled. This is motivated
by the fact that its presence impacts considerably the computational cost of
the method, while its current implementation (filtering of the level set field
instead of staggered discretization) is not ideal and hence not representative of
the capabilities of a multiphase VPM method.

Both plots on Figure 6.36 show the computational cost of VPM and Velo-
Grid methods. All curves were obtained on the first case of the Rising Bubble
benchmark. More precisely, the CPU time measured corresponds to the CPU
time4 necessary for a solver to reach the time point t = 4. A faster simula-
tion can be achieved either by computing less time steps (which implies larger
time step values), or by decreasing the computational cost of each time step
(e.g. by coarsening the mesh). Measures were performed on a computer with
an Intel 2.90GHz i5-2450M processor and 4GB 1333MHz DDR3 RAM5. All
simulations were run using a single process. The left figure shows the influence
of mesh refinement (Fig. 6.36a), whereas the right figure shows the influence of
the viscous or advective nature of the simulation on its computational cost.

Influence of mesh refinement

Figure 6.36a shows the CPU time of the method depending on the grid spacing
h for both the VPM () and veloGrid () solvers. The idea here
is to evaluate the average cost of computing a single time step. Hence each

4It is taken as the sum of the CPU time spent by the process in user-mode and kernel-mode
i.e. the sum of “user” and “sys” measures outputted by the GNU “time” command.

5The operating system was patched against the Spectre and Meltdown flaws which might
alter its performance regarding memory access[219].

6.9. Validation of full solver 153

10−3 10−2 10−1

h

103

104

105
C
P
U

ti
m
e
[s
]

(a) Influence of mesh refinement at
CFL/Frr = 0.28.

10−2 10−1 100 101 102
CFL
Frr

102

103

104

105

C
P
U

ti
m
e
(s
ec
on

d
s)

(b) Influence of CFL/Frr ratio on
128x256 mesh. Line () is VPM
with an admissible LCFL of 0.5.

Figure 6.36: Computational efficiency of the VPM solver (with an admissible
LCFLadm of 0.1) () in comparison to VeloGrid ().

simulation uses the same time step value of ht = 1· 10−4, which guarantees
that they all require 40,000 time steps in total to reach the final time of tend =
4.0. Aside from the surface tension coefficient that had been set to zero, the
parameters used are the ones of the Rising Bubble A benchmark (Table 6.2),
which imply a mesh Reynolds of 0.28.

Obviously, the finer the grid, the more grid nodes there are, and the more
costly the simulations become. More interestingly, both solver show the same
slope which suggests identical algorithmic complexity. Also note that the vel-
oGrid solver is on average 33% cheaper than the VPM solver.

Influence of mesh Reynolds

Figure 6.36b plots the computational costs against the CFL to mesh Fourier
ratio CFL/Frr, also known as the mesh Reynolds number. Low CFL/Frr
ratios indicate that the mesh Fourier is the stronger stability criterion, and
will enforce a stricter constraint on the time step. On the contrary, higher
CFL/Frr ratios indicate that the CFL criterion is the strictest. Around one
both criteria have similar influence, although the exact tipping point depends
on the values chosen for the admissible CFL or mesh Fourier. Lower (higher)
CFL/Frr ratios are achieved by increasing (decreasing) the dynamic viscos-
ity of both phases such that the µ+/µ− ratio remains constant. Eventually,
note that the simulations of high CFL/Frr ratios are under-resolved since no
subgrid-scale turbulence models are used. However, they give a good indication
of the cost of corresponding LES simulations.

Both methods have the same algorithmic complexity (Fig. 6.36a), but the
gains vary greatly (Fig. 6.36b). Three regimes clearly show in Figure 6.36b.

Firstly, when the mesh Fourier Frr is the most stringent stability criterion

154 Chapter 6. Numerics and solver validation

CFL/Frr < 1, the time step of both methods is constrained by the mesh
Fourier which enforces

ht = ν h2
x Frradm (6.51)

where the admissible mesh Fourier Frradm and the grid spacing hx are con-
stants. In other words the time step is proportional to the kinematic viscosity
ht ∝ ν and hence to the mesh Fourier itself ht ∝ Frr. This proportional law
is represented in the plot by a slope of minus one for CFL/Frr < 1. In this
regime, the VeloGrid method is marginally cheaper than the VPM method, by
around 30%.

Secondly, for flows where the CFL is the limiting stability criterion CFL/Frr >
1, the VeloGrid simulation cannot go below a 400 seconds cpu-time limit. In-
deed, for low viscosities the bubble does not have enough time to reach its
steady rising velocity. In other words, the viscous effects do not have enough
time to grow sufficiently strong in order to affect the bubble’s ascension velocity
significantly. Hence for all high CFL/Frr ratios, the ascension velocity remains
of the same order of magnitude. As a consequence, the time step value enforced
by the CFL constraint

ht = max
xxxi,j∈Ωhhh

‖uuu‖hx CFLadm (6.52)

is proportional to velocity, and hence also remains of the same order of magni-
tude for all CFL/Frr ratios. Thus the 400 seconds limit. On the other hand,
the VPM solver is not limited by the CFL number and hence can use greater
time step values which results in still decreasing CPU times.

Thirdly, the VPM solver reaches a lower limit at 200 and 400 seconds CPU
time, for an admissible Lagrangian CFL of 0.1 and 0.5 respectively 6.36b. This
occurs when the Lagrangian CFL becomes the most stringent criterion for the
time step value. Indeed, when the LCFL reaches its maximum admissible value,
the time step cannot be reduced any further and hence the computational cost
of the method remains constant. The further increase of the CPU cost for the
VPM solver with LCFL = 0.1 is not explained by this phenomenon, but by
other artifacts of the simulation.

Summary

To summarize, the VPM method is shown to be about 30% slower for highly-
viscous flows but can become up to four times faster for highly advective flows.
Also, both VPM and VeloGrid solvers have the same algorithmic complexity.

6.10 Simulations and extension to heat transfer
Now that the VPM code has been validated over well-established benchmarks,
it is used on simulations similar to those that could be encountered in the
nuclear sector. In this section, firstly the solver for heat transfer is presented.
Then, the previously considered Rayleigh-Taylor A simulation is run again but
with added heat conduction and advection effects. Eventually, a sodium-argon
reactor pool simulation is run.

6.10. Simulations and extension to heat transfer 155

6.10.1 VPM method with heat transfer
In our problems, the temperature field is governed by the conservation law

DT

Dt
=

1

ρ c
∇·λ∇T (6.53)

which is obtained from the conservation law on internal energy

Dei
Dt

= −∇·ϕϕϕ + τττ : ∇uuu (6.54)

by neglecting the heat created by friction effects. Here c is the specific heat
capacity, ϕϕϕ the heat flux density vector and τττ the deviatoric component of the
stress tensor. Recall that in the case of an incompressible flow the specific heat
capacity at constant pressure cp and at constant volume cv are equal. Addi-
tionally, as a first step, the heat flux across the domain boundary is assumed
to be zero.

In Heavy Liquid Metal nuclear reactors the thermal diffusivity

α :=
λ

ρ c
(6.55)

is orders of magnitude greater than viscous diffusivity ν. This yields very low
Prandtl numbers

Pr :=
ν

α
(6.56)

Table 6.4 shows some example values for various coolants typically encountered
in HLM nuclear reactors as well as for argon which will be assumed to be the
reactor’s cover gas. Note that the thermal diffusivity of both coolant and cover
gas phases is actually very similar, and instead it is the kinematic viscosity that
is different. For instance, for a reactor using sodium as a coolant and argon as
a cover gas, the thermal diffusivity α is respectively of 6.3· 10−5 and 9.6· 10−5

viscous diffusivity ν of 3.1· 10−7 and 6.3· 10−5 at a pressure of 1hPa and a
temperature of 700K. Additionally, note that although the thermal diffusivity
is very similar, there are large jumps in conductivity λ and thermal inertia
ρ across the fluid interface.

Note that in flows with Prandtl numbers around one, the Reynolds analogy
is often used to model subgrid-scale phenomena occurring in boundary layers. It
consists in assuming that the thermal and viscous boundary layers share similar
profiles. Practically, the same profile is used for velocity and temperature
fields. However, this assumption no longer holds for low Prandtl flows, as are
encountered for instance in the liquid metal coolant of HLM reactors. See
in particular, Cheng’s and Tak’s 2006 work wihch compares several models
[220], or 2012 article by Bricteux Duponcheel Manconi and Bartosiewicz [221].
Nevertheless in the simulations performed, no model is used for the boundary
layers and hence the issue does not arise.

Note also that in order for the numerical method to be stable, the time
step value ht needs to satisfy the mesh Fourier criterion. This is true for the
momentum equation but also for the heat equation. However, since the thermal
diffusivity α is one to two orders magnitude greater than the viscous diffusivity

156 Chapter 6. Numerics and solver validation

Table 6.4: Fluid properties of some coolants and cover gas employed in HLM
reactors at 1hPa and 700K

Sodium Lead Bismuth LBE Argon
Thermal inertia ρ cp

[J.m−3.K−1] 1 085 000 1 540 400 1 311 500 1 458 700 357.79

Thermal conductivity λ
[W.m−1.K−1] 68.00 16.90 13.55 13.38 0.034 27

Thermal diffusivity α
[m2.s−1] 6.270 · 10−5 1.097 · 10−5 1.033 · 10−5 9.169 · 10−6 9.577 · 10−5

Mass density ρ
[kg.m−3] 852 10 531 9 871 10 169 0.687 4

Dynamic viscosity µ
[Pa.s] 2.644 · 10−4 2.095 · 10−3 1.350 · 10−3 1.451 · 10−3 4.348 · 10−5

Viscous diffusivity ν
[m2.s−1] 3.105 · 10−7 1.990 · 10−7 1.368 · 10−7 1.427 · 10−7 6.338 · 10−5

Pr 0.005 0 0.018 1 0.013 2 0.015 6 0.666 7

ν, then for a given admissible mesh Fourier number Frradm the admissible
time step of the heat equation

ht,adm =
h2
x Frradm

α
(6.57)

is one to two orders of magnitude lower than the admissible time step for the
momentum equation

ht,adm =
h2
x Frradm

ν
(6.58)

In other words, the solving of the heat equation considerably slows down the
solver as a whole. This can be alleviated by solving the heat equation implicitly,
for instance using an Euler Implicit or a Crank-Nicolson time integrator. In
both cases, the heat equation (Eq. 6.53) becomes a screened Poisson problem
that can be solved using an elliptic solver. Indeed, in the case of an Euler
Implicit time integrator it becomes

ht
ρ c
∇·
(
λ∇Tn+1

)
− Tn+1 = − Tn (6.59)

By using an implicit approach instead of an explicit one, the stability of the
method no longer depends on the mesh Fourier for the heat equation. Instead,
only the momentum equation’s mesh Fourier and the Lagrangian CFL numbers
influence the choice of the time step value. Therefore much larger time step
values can be used.

Nevertheless, implicitly solving the screened Poisson problem (Eq. 6.59) re-
quires the use of an elliptic solver. Such solver is in practice more computation-
ally expensive than parabolic solvers used for the explicit problem (Eq. 6.53).
This means that the cost of computing a single time step will be higher. But
since there are much less time steps in the implicit method than in the explicit
one, it becomes the fastest overall.

6.10. Simulations and extension to heat transfer 157

6.10.2 Influence of Prandtl number

The implicit solver (Eq. 6.59) for the heat equation is used on the Rayleigh-
Taylor benchmark, with various Prandtl number values. Initially, the temper-
ature of the top phase is set to 100K, and that of the bottom phase to 200K.
With time, the temperature field is advected by the flow and also diffuses itself
because of thermal conductivity.

Three simulations are run with different values of the conductivity λ: 1,
10 and 100W.m−1.K−1. In all three cases, the thermal capacity is set such
that the product of mass density and specific heat capacity ρ c is equal to
54 kg.m−1.K−1.s−2. Both phases’ parameters are identical. This yields ther-
mal diffusion coefficients α of 0.00313, 0.0313 and 0.313m2.s−1. Since the
benchmark’s kinematic viscosity ν is of 0.00313m2.s−1, the three flows’ Prandtl
numbers are respectively 1, 0.1 and 0.01.

Figure 6.37 shows the temperature fields for each of those simulations at
time t = 1.0. One can notice that for Pr = 1 the higher gradients of the
temperature field are located around the interface. On the other hand, as
the Prandtl number increases, the temperature field appears more and more
disconnected to the interface location.

6.10.3 Simulation of nuclear-like cases

As a proof of concept that the VPM solver developed in this thesis can be useful
for nuclear applications, a simulation with parameters similar to what could be
encountered in a nuclear reactor is performed. Figure 6.38 shows a simulation
of a nuclear vessel containing liquid sodium in its lower half and argon above
it. Hence, there is a mass density ratio of ρ+/ρ− = 1000 across the interface
and Prandtl numbers of 0.01 and 1 in the lower and upper phases. At the
time being, those results are preliminary and under-resolved (no subgrid-scale
model has been used). It is merely meant to show that the VPM method can
handle such simulation.

A heated core in the lower-middle of the pool heats and puts the fluid
in motion. The upward motion is not caused by buoyancy effects (in our
current model, the mass density and dynamic viscosity are not function of
the temperature but merely of the level set field). Instead, numerically it
is implemented as a momentum and temperature source. In order to yield
more complex (and interesting) flow structures, the fluid acceleration is much
stronger than the one that would be generated by buoyancy effects only.

At the interface, the high temperature region reaches beyond the interface.
This is caused by the thermal diffusion of course, but also mainly by the inter-
face thickness required by the smeared interface model.

Argon bubbles are being entrained by the recirculation of the sodium coolant,
and quickly brought to temperature because of their small volume and hence
heat capacity, but also because of the interface thickness that reaches halfway
into the bubble.

Below the contact line a pocket of colder fluid can be seen Fig. 9a-9b.
Its heating is delayed because the presence of the wall prevents it from being
sucked away by the vortex, and hence cannot mix with it. It is only later that

158 Chapter 6. Numerics and solver validation

−0.5 0.0

−1.5

−1.0

−0.5

0.0

0.5

100

125

150

175

200

(a) Pr = 1

−0.5 0.0

−1.5

−1.0

−0.5

0.0

0.5

100

125

150

175

200

(b) Pr = 0.1

−0.5 0.0

−1.5

−1.0

−0.5

0.0

0.5

100

125

150

175

200

(c) Pr = 0.01

Figure 6.37: Temperature fields on the Rayleigh-Taylor A benchmark, depend-
ing on the Prandtl number.

(a) t = 3.6 (b) t = 5.1

Figure 6.38: Temperature field () and interface location () during
the simulation of the main vessel of a sodium-cooled pool-type reactor with an
impulsively started heating core. The flow is put in motion and heated by the
core in the lower-middle.

6.11. Summary 159

the momentum and temperature diffuse, leading to both its progressive heating
and its advection downwards. As it is being pushed down, the cold fluid is then
replaced with warmer fluid from the region just below the interface.

Turbulent flow structures can be seen in the argon atmosphere where the
turbulent mixing of the warmer argon from the interface and the colder argon
away from the interface leads to a high temperature gradient regions. In com-
parison, the temperature gradients are much smaller in the low-Prandtl liquid
metal.

On Figure 6.38b, the two higher temperature regions in the top corners
of the fluid domains correspond to two vortex tubes of argon that have been
heated close to the fluid interface then advected away by recirculation currents
at the contact line.

The very symmetric behaviour of the flow in the beginning of the simulation
Fig. 9a leaves place to more and more asymmetry with time Fig. 9b as the
flow structures of each sides start interacting with each other.

6.11 Summary
The VPM method developped in this thesis has been validated on various
benchmarks, firstly regarding the interface capturing method, then the imple-
mentation of the surface tension term and eventually on complex flows. The
performance of the VPM solver has been compared to that of a velocity-pressure
code, both in terms of accuracy of the results, and of computational efficiency.
It appears that the VPM method yields results of similar quality than the Vel-
oGrid solver. Additionally, veloGrid is cheaper by 33% for highly viscous flows
while VPM can be up to four times cheaper on highly advective flows. Even-
tually, a heat equation solver is implemented. The influence of the Prandtl
number on results is briefly discussed, and a proof-of-concept simulation of a
nuclear reactor vessel is performed.

160 Chapter 6. Numerics and solver validation

Chapter 7

Conclusions and perspectives

7.1 General conclusion

The VPM method has proven itself superior to traditional Eulerian velocity-
pressure methods for certain specific applications, including the study of wakes
behind aircraft or wind turbines. The initial motivation of the present work
was to probe the potential of the VPM method for multiphase applications,
which is a domain that has almost never been explored by other researchers so
far [106].

In this thesis, a multiphase Vortex Particle-Mesh method with heat trans-
fer has been presented. Starting from a single-phase flow VPM method (see
section 2), features were added successively: interface capturing (see section
3), handling of surface tension (see section 4.1), variable fluid properties (see
section 4.2), handling of high mass density-ratio flows (see section 5), and the
computation of thermal conduction and convection (see section 6.10). The full
VPM solver was then validated on benchmarks and its performance compared
to that of a more traditional velocity-pressure finite difference Eulerian solver
(see section 6.4).

The work presented in this thesis allowed for the method to support cases
that were not handled initially, and whose solution was not available in the
current litterature. This includes the computation of the surface tension term
for finite difference vortex methods, or the buoyancy instability for multiphase
vortex methods with high mass-density ratios. Work on the latter has been
submitted for publication in the Computers & Fluids journal. As of today the
VPM multiphase solver seems to be on par with more traditional solvers both
in terms of acuracy and computational efficiency. The benchmarks show an
equivalent accuracy in the results obtained. On the other hand, thanks to its
Lagrangian nature, the VPM solver is up to four times faster than traditional
velocity-pressure solvers for highly advective flows, whereas the computational
costs of the velocity-pressure solver is sligthly inferior to the cost of the VPM
method by around 33% for highly viscous flows. Eventually, VPM methods are
inherently a fair bit more complex to implement and hence represent an advan-
tage only where their affordable cost outperforms that of traditional solvers.

161

162 Chapter 7. Conclusions and perspectives

Nevertheless, it is important to note that multiphase Vortex Particle-Mesh
methods are yet fairly uncommon. Indeed, recall that only one article on
a similar subject has been found [106]. Hence improvements of the method
presented in this thesis could lead to a very competitive solver, at least for some
applications. In particular, the implementation of a subgrid-scale turbulence
model will allow the use of coarser meshes and hence weaken the mesh Fourier
stability constraints. By doing so, one shifts towards the “highly-advective”
class of flows for which the VPM is superior to traditional methods. Also,
working on the smallest domain to encompass non-zero vorticity values will
once again play in favor of the VPM method. Indeed the vorticity field is
more compact than the velcotiy field. Last but not least, although great care
was taken in the development of the VPM solver, the latter is still young
and can probably still be optimized, both in terms of computational efficiency
and accuracy. On a side note, a staggered discretisation of the level set field
in respect to vorticity, or an immersed-interface method would be interesting
additions. Note however, that working in vorticity will necessarily add an
additional derivative on the viscous and surface tension terms as compared to
a velocity-pressure solver, and that represents an additional challenge for the
simulation of two-phase flows with very different fluid properties and hence
very large gradients accross the fluid interface.

A more detailled summary of the contributions of the present thesis and
perspectives for future works are now presented.

7.2 Achievements and research results

7.2.1 Answers to research questions
In the introduction (see section 1.6), four research questions were formulated.
The present section provides a quick overview of their answers, which will be
further developped in the upcoming sections:

What advantages brings the Lagrangian implementation of a multi-
phase flow solver?

The Lagrangian implementation has shown to provide a better computa-
tional efficiency, up to four times faster, for highly-advective flows. On
the other hand it was 33% slower in highly-viscous flows.

How does a multiphase VPM compare to a more traditional Eulerian
method?

The VPM solver presented in this thesis achieved similar accuracy than a
velocity-pressure Eulerian solver, but can be cheaper for highly advective
flows (see previous point).

How to implement surface tension and handle phases with differing
properties?

7.2. Achievements and research results 163

A single-fluid method was used to handle the difference in fluid proper-
ties between both phases, and a the surface tension term was added. The
latter caused an odd-even decoupling which was solved by using a tan-
gential discrete filter. A better solution would be to develop a staggered
method.

How to simulate flows with large mass density difference between
phases?

Large mass density difference can trigger a numerical instability in the
baroclinic term of the vorticity equation, when the latter is solved in a
parabolic manner. This can be prevented either by using an elliptic solver
for pressure or by under-relaxing the material acceleration embedded in
the baroclinic term.

7.2.2 Summary of the work accomplished
Firstly, the motion of the fluid interface has been captured using a particle-
based implementation of the level set method. The choice of this particular
method was justified by our strong requirement of a method that could cap-
ture the geometry of the interface well, the lesser importance given to volume
conservation, and the lack of maturity of the conservative level set method.
Note that the level set reinitialization is performed using the Hamilton-Jacobi
formulation instead of the Fast Marching Method, and that the local variant
of the level set method has been chosen.

Different strategies for level set reinitialization have been investigated: the
level set field may be reinitialized fully every n time steps, or only when the level
set field is detected as being too distorted, or it may be partially reinitialized
at every single time step. As part of that effort, several ways to measure the
distortion of the level set field have been investigated. Indeed, although the
main measure of distortion is how different from one the gradient of the level
set field is, this measure is only meaningful away from level set shocks. Hence,
the regions of the domain with shocks must be filtered out.

Secondly, the level set field has been used to compute the surface tension
term of the vorticity equation. As for most terms of the vorticity equation, the
surface tension term is obtained by taking the curl of its corresponding term
in the momentum equation. Its expression can nevertheless be simplified using
the properties of the term, such as the fact that certain components of the term
are invariant tangentially to the interface. In particular, two formulations of
this term have been suggested and their influence on the results of simulations
has been shown. Eventually, the partially expanded variant (Eq. 4.6) has been
prefered over the fully expanded one (Eq. 4.7).

Also, the existence of an odd-even decoupling for the surface tension term
has been found. Indeed, it is shown that if vorticity and level set fields are
expressed at collocated nodes, then the vorticity field is insensitive to some
high frequency level set variations (flip-flop mode). A filtering solution was
proposed, that is based on discrete filters. It was shown that two dimensional

164 Chapter 7. Conclusions and perspectives

discrete filters distort the solution significantly by artificially creating “trenches”
in the bubble, and leading to very unphysical results. Instead three “tangential”
discrete filters were proposed. Upon comparison of their performances, the
“direct” form filter was chosen because it preserved the interface’s shape best.

Following that, it was noted that the process of level set reinitialization
generated some artificial fluctuations in the level set field. Those fluctuations
are imperceptible in the level set field itself, but become considerable in the
gradient of the level set laplacian. Since the latter is directly used in the
surface tension term of the vorticity equation, it is strongly impacted as well.
In practice it results in the apparition of “dents” in the vorticity field, which
is to say local maxima and minima of vorticity along the interface. Similar
fluctuations have been observed in the surface tension term of the momentum
equation, but since the latter is a function of the laplacian of the level set field
(instead of the gradient of the laplacian) those fluctuations are much weaker.
In practice the presence of those dents does not seem to affect the solutions of
the solvers, and the gradient of curvature is hence used unchanged in the rest
of the thesis.

Additionally, the viscous term of the vorticity equation has been imple-
mented using the single-fluid model where both phases are considered as a
fluid with variable fluid properties. In particular, the dynamic viscosity and
mass density are mollified accross the interface. This requires a more complex
expression for the viscous term than a mere Laplacian of vorticity. That term
can be expanded in multiple ways as shown in the appendix (see appendix G).
It was shown that a previous work on the subject by Thirifay [115] contained
an error which has been corrected, and whose impact on the results has been
shown.

The existence of a numerical instability on the buoyancy term was discov-
ered and investigated. A simplified one-dimensional model was devised which
reproduces satisfactorily the behavior observed in VPM simulations. Prop-
erties of this unstability were investigated, and in particular the influence of
various parameters was studied. It appeared that the main criteria influencing
the instability growth rate is the ratio of mass densities between both phases.
It was also shown that the choice of the time integrator had an influence on the
convergence and growth rate of the instability. In particular two Runge-Kutta
time integrators of the same order and hence same stability regimes according
to a von Neumann stability analysis, but different Butcher table coefficients ap-
pear to have different stability regimes in respect to the buoyancy instability,
with one being more stable than the other.

Moreover, an under-relaxation method was devised and implemented to
tackle the stability issue. The values of the under-relaxation coefficient required
for achieving stability for a given mass-density ratio are presented. Also, the
one-dimensional model gives consistent results with VPM simulations in the
under-relaxed case.

This work has been materialized in an article submitted for publication into
the Computers & Fluids journal.

7.3. Perspectives 165

Following that, the VPM method was validated on benchmarks and its
performance was compared to that of a traditional Eulerian velocity-pressure
solver, both in terms of accuracy and computational efficiency. It results that
similar accuracy is achieved by the VPM method and that it can be up to
four times faster in terms of computational times for highly advective flows.
The convergence of the VPM method was also studied on a “pure level set”
benchmark, and a “complex flow benchmark”. On a side note, the accuracy of
several methods for measuring volume and surface area from a level set field
was studied.

Eventually, results obtained with the developped VPM method enriched
by a heat equation solver have been presented. This includes a study of the
influence of the Prandtl number on the flow. Also, in order to show the viability
of the method for real-world applications, a simulation of a pool filled with
Sodium and covered with Argon similar to what could be encountered in a real
nuclear application is performed.

7.3 Perspectives
To pursue the work, several subjects can be investigated:

• Chapter 5 describes a numerical instability on the buoyancy term. It
was shown that the choice of the time integrator sensibly influences the
stability of the numerical method (see section 5.6.2). It also showed in the
same section that two Runge-Kutta time integrators of same order but
different Butcher tables have different stability properties in respect to the
numerical buoyancy instability, despite having identical stability behavior
in the sense of the von Neumann stability analysis. Hence, it should be
investigated, for a given order of the Runge-Kutta time integrator, what
are the values of the Butcher table that achieve the greatest stability, and
what is the maximum mass density ratio that could thereby be achieved.

• It has been shown in section 4.1.1 that the surface tension term in the
vorticity equation suffers from an odd-even decoupling when the vorticity
and level set fields are expressed on collocated nodes. A solution based
on the filtering of the level set field has been presented in this thesis.
Nevertheless, it has several shortcomings. In particular, it drastically
reduces the accuracy of the method: a level set field filtered on a N ×N
grid so as to remove the highest frequency mode (“flip-flop mode”) actually
has an effective resolution of N

2 × N
2 . Thus the resolution is divided by

four. In other words, one requires four times more points to achieve
similar accuracy, which represents a significant increase of the cost of
the method. Firstly because the computational cost of each time step
increases with the number of points to handle. Secondly because a smaller
grid spacing leads to a stronger mesh Fourier constraint and hence smaller
admissible time steps. A better solution would be to use a staggered
Vortex Particle-Mesh method but this represents significant changes in
the numerical method. In particular it requires two sets of particles (one
for the level set field and one for the vorticity field) and it is not obvious

166 Chapter 7. Conclusions and perspectives

how the advection of those two sets of particles should be performed.
Moreover, note that the staggered VPM method proposed by Uchiyama
et al. in 2013 [121] is not suitable for level set fields.

• Vortex Particle-Mesh methods are known to be especially efficient for
highly advective flows. Indeed, in traditionnal Eulerian methods, the CFL
number becomes the most strigent stability criteria, much before the mesh
Fourier. On the other hand, VPM methods are unaffected by the CFL
and can push the time step value higher until the mesh Fourier’s stability
limit is reached. Such CFL-dominated simulations (where VPM methods
become more computationally efficient) tend to be more frequent in LES
simulations than in DNS simulations. It would therefore be interesting
to add a subgrid-scale model to the solver, as has been done for some
single-fluid VPM methods [94].

• Several multiphase flows are relevant to study in three-dimensions. This
is true of some benchmarks (for instance only three-dimensional Rising
Bubble benchmarks can be compared to experiments) and for certain ap-
plications (the flow within the vessel of a nuclear reactor is very dependent
on some three-dimensional geometries, in particular the presence of the
heat exchangers). At first, the method presented in this thesis should be
extendable to three-dimensions without apparent difficulties. In particu-
lar, the implementation of the surface tension or viscous terms should not
require additional care in 3D, and the level set method does not change
significantly between 2D and 3D. Hence at first glance, the biggest change
seems to be the addition of a vortex stretching term on the Right Hand
Side of the vorticity equation. This term has been used in previous work
such as Cottet’s 1981 work [42]. Nevertheless, prudence is called for when
it comes to numerical methods, as the harshest difficulties are sometimes
not the most obvious ones. . .

• Nowadays most High Performance Computing CFD simulations use par-
allel computing. The method presented here has been developped for
single-core solvers, and it would be interesting to parallelize the code.
Nevertheless, to limit possible difficulties, the methods used in the VPM
solver have been chosen to be easily parallelized. For instance, the Hamilton-
Jacobi implementation of the level set method has been prefered over the
Fast Marching Method, in part because the later is more difficult to par-
allelize eventhough solutions exist [168] [169] [170].

• Eventually, one of the original motivations behind the present work was
the simulation of the conjugated heat transfer between wall, coolant and
cover gas in a pool-type nuclear reactor, as was presented in section 1.2
and illustrated on figure 1.4. This particular problem requires the sim-
ulation of the exchange of heat between the wall and the fluids, which
would require some changes to the heat equation solver. It would indeed
be necessary to set boundary conditions which allow the fluid domain
and a solid wall domain to communicate with each other. Also bound-
ary conditions on the level set field will need to be implemented in order

7.3. Perspectives 167

to simulate the physics of the dynamic contact angle (see section 3.2.2).
Additionally, it would be useful to handle the fluid’s properties such as
dynamic viscosity and mass density as functions of temperature, instead
of keeping them constant as is done in the present work1. Eventually, the
VPM does not handle walls naturally, and thence, it might be preferable
to use a hybrid method that uses a velocity-pressure solver at the wall,
and a vorticity solver away from the wall, in a way similar to Thirifay’s
work [115] for instance.

Acknowledgements
This work has been funded by Nuclear Technical Safety Organisation Bel V2.

1Values of some fluid properties as a function of temperature are indicated in Appendix
(see appendix E).

2http://belv.be

http://belv.be

168 Chapter 7. Conclusions and perspectives

Bibliography

[1] JP Christiansen. Vortex: a 2-dimensional hydrodynam-
ics simulation code. Technical Report CLM-R106, Culham
Laboratory, 1970. http://www.osti.gov/scitech/biblio/
4080682-vortex-dimensional-hydrodynamics-simulation-code.

[2] FH Harlow. Fluid dynamics in group t-3 los alamos national laboratory
(la-ur-03-3852). Journal of Computational Physics, 2004.

[3] KV Roberts and JP Christiansen. Topics in computational fluid mechan-
ics. Computer physics communication, 1972.

[4] A Critchlow. Arctic drilling is inevitable: if we don’t
find oil in the ice, then russia will. http://www.
telegraph.co.uk/finance/newsbysector/energy/11080635/
Arctic-drilling-is-inevitable-if-we-dont-find-oil-in-the-
ice-then-Russia-will.html, Sep 2014. (The Telegraph article).

[5] National Energy Board. Canada’s oil sands - opportunities and challenges
to 2015: An update. Technical report, National Energy Board, Jun 2006.

[6] Navigant Research. Shale gas export boom: Don’t celebrate
yet. https://www.forbes.com/sites/pikeresearch/2013/10/18/
shale-gas-export-boom-dont-celebrate-yet/#7a3508a82e2f, Oct
2013. (Forbes article).

[7] D Demetriou. Energy imports push japan trade deficit to record
high. http://www.telegraph.co.uk/finance/economics/10598545/
Energy-imports-push-Japan-trade-deficit-to-record-high.
html, Jan 2014. (The Telegraph article).

[8] J McCurry. Japan restarts first nuclear reactor since fukushima
disaster. https://www.theguardian.com/environment/2015/aug/11/
japan-restarts-first-nuclear-reactor-fukushima-disaster, Aug
2015. (The Guardian article).

[9] US Energy Information Administration. Total primary energy consump-
tion 2014. http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.
cfm?tid=44&pid=44&aid=2, 2014. (Eia database).

169

http://www.osti.gov/scitech/biblio/4080682-vortex-dimensional-hydrodynamics-simulation-code
http://www.osti.gov/scitech/biblio/4080682-vortex-dimensional-hydrodynamics-simulation-code
http://www.telegraph.co.uk/finance/newsbysector/energy/11080635/Arctic-drilling-is-inevitable-if-we-dont-find-oil-in-the-
http://www.telegraph.co.uk/finance/newsbysector/energy/11080635/Arctic-drilling-is-inevitable-if-we-dont-find-oil-in-the-
http://www.telegraph.co.uk/finance/newsbysector/energy/11080635/Arctic-drilling-is-inevitable-if-we-dont-find-oil-in-the-
ice-then-Russia-will.html
https://www.forbes.com/sites/pikeresearch/2013/10/18/shale-gas-export-boom-dont-celebrate-yet/#7a3508a82e2f
https://www.forbes.com/sites/pikeresearch/2013/10/18/shale-gas-export-boom-dont-celebrate-yet/#7a3508a82e2f
http://www.telegraph.co.uk/finance/economics/10598545/Energy-imports-push-Japan-trade-deficit-to-record-high.html
http://www.telegraph.co.uk/finance/economics/10598545/Energy-imports-push-Japan-trade-deficit-to-record-high.html
http://www.telegraph.co.uk/finance/economics/10598545/Energy-imports-push-Japan-trade-deficit-to-record-high.html
https://www.theguardian.com/environment/2015/aug/11/ japan-restarts-first-nuclear-reactor-fukushima-disaster
https://www.theguardian.com/environment/2015/aug/11/ japan-restarts-first-nuclear-reactor-fukushima-disaster
http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2
http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2

170 Bibliography

[10] Reuters Staff. Chinese capital shuts third coal-fired plant in war on smog.
https://www.reuters.com/article/us-china-pollution-beijing/
chinese-capital-shuts-third-coal-fired-plant-in-war-on-smog
-idUSKBN0MG1D120150320, Mar 2015. (Reuters article).

[11] J Duggan. China working on uranium-free nuclear plants in attempt
to combat smog. https://www.theguardian.com/world/2014/mar/
19/china-uranium-nuclear-plants-smog-thorium, Mar 2014. (The
Guardian article).

[12] R Martin. Germany runs up against the limits of re-
newables. https://www.technologyreview.com/s/601514/
germany-runs-up-against-the-limits-of-renewables/, Mai 2016.
(MIT Technology Review).

[13] Reuters Staff. Renewable energy increases blackout risk-report.
https://www.reuters.com/article/idUSL5E7MN37M20111123, Nov
2011. (Reuters article).

[14] C Morris. German power prices negative over
weekend. https://energytransition.org/2014/05/
german-power-prices-negative-over-weekend/, May 2014. (Energy
Transition article).

[15] 50Hertz. Electricity flows between 50hertz (germany) and ceps (czech
republic) are regulated by phase-shifting transformers. http://www.
50hertz.com/en/News/Detail/id/3244, Jan 2017. (50Hertz press re-
lease).

[16] A Grubler. The costs of the french nuclear scale-up a case of negative
learning by doing. Energy Policy, 2010.

[17] F Carré, JM Cavedon, J Knebel, P Lisowski, T Ogawa, D Pooley, A Ver-
steegh, T Dujardin, and C Nordborg. Independent evaluation of the
myrrha project, report by an international team of experts. Technical
report, OECD, 2009.

[18] SE Hieber and P Koumoutsakos. A lagrangian particle level set method.
Journal of Computional Physics, Jun 2005.

[19] K Myrillas, P Planquart, A Simonini, JM Buchlin, and M Schyns. Cfd
and experimental investigation of sloshing parameters for the safety as-
sessment of hlm reactors. Nuclear Engineering and Design, Jul 2016.

[20] Y Marichal. An immersed interface vortex particle-mesh method. PhD
thesis, Université catholique de Louvain, Sep 2014.

[21] Many authors. Methods in computational physics, volume Vol 9 plasma
physics. Academic Press, 1964.

[22] RW Hockney and JW Eastwood. Computer simulation using particles.
Adam Hilger, 1988.

https://www.reuters.com/article/us-china-pollution-beijing/chinese-capital-shuts-third-coal-fired-plant-in-war-on-smog
https://www.reuters.com/article/us-china-pollution-beijing/chinese-capital-shuts-third-coal-fired-plant-in-war-on-smog
-idUSKBN0MG1D120150320
https://www.theguardian.com/world/2014/mar/19/china-uranium-nuclear-plants-smog-thorium
https://www.theguardian.com/world/2014/mar/19/china-uranium-nuclear-plants-smog-thorium
https://www.technologyreview.com/s/601514/germany-runs-up-against-the-limits-of-renewables/
https://www.technologyreview.com/s/601514/germany-runs-up-against-the-limits-of-renewables/
https://www.reuters.com/article/idUSL5E7MN37M20111123
https://energytransition.org/2014/05/german-power-prices-negative-over-weekend/
https://energytransition.org/2014/05/german-power-prices-negative-over-weekend/
http://www.50hertz.com/en/News/Detail/id/3244
http://www.50hertz.com/en/News/Detail/id/3244

Bibliography 171

[23] S Subramaniam. Lagrangian-eulerian methods for multiphase flows.
Progress in Energy and Combustion Science, 2012.

[24] J von Neumann. Proposal and analysis of a new numerical method for the
treatment of hydrodynamical shock problems. Technical Report OSRD-
3617, Office of scientific research and development, 1944.

[25] JJ Monaghan. Smoothed particle hydrodynamics and its diverse appli-
cations. Annual Review of Fluid Mechanics, 2012.

[26] JJ Monaghan. Smoothed particle hydrodynamics. Reports on progress
in physics, 2005.

[27] DJ Price. Smoothed particle hydrodynamics : things i wish my mother
taught me. Unpublished, Nov 2011.

[28] JJ Monaghan. A brief history of sph in hydraulics. Hydrolink, Oct 2015.

[29] transient fluid-flow problems involving free surfaces The MAC method,
a computing technique for solving viscous incompressible. Je welch and
fh harlow and jp shannon and bj daly. Technical Report LA-3425, Los
Alamos National Laboratory, Mar 1966.

[30] S McKee, MF Tomé, VG Ferreira, JA Cuminato, A Castelo, FS Sousa,
and N Mangiavacchi. The mac method. Computers and Fluids, 2007.

[31] SO Unverdi and G Tryggvason. A front-tracking method for viscous, in-
compressible, multi-fluid flows. Journal of Computational Physics, 1992.

[32] FH Harlow. Hydrodynamic problems involving large fluid distortions.
Journal of the Association for Computing Machinery, 1957.

[33] JP Christiansen. Numerical simulation of hydrodynamics by the method
of point vortices. Journal of Computational Physics, 1973.

[34] P Chatelain, A Curioni, M Bergdorf, D Rossinelli, W Andreoni, and
P Koumoutsakos. Billion vortex particle direct numerical simulations of
aircraft wakes. Computational Methods Applied to Mechanical Engineer-
ing, 2008.

[35] Many authors. Aerodynamics of vortical type flows in three dimensions.
AGARD, 1983.

[36] T Uchiyama and A Fukase. Three-dimensional vortex method for gas-
particle two-phase compound round jet. Transactions of the American
Society of Mechanical Engineers, Jan 2005.

[37] G Papadakis and SG Voutsinas. In view of accelerating cfd simula-
tions through coupling with vortex particle approximations. Journal of
Physics: Conference Series, 2014.

[38] GS Oxley. A 2-D hybrid Euler-compressible vortex particle method for
transonic rotorcraft flows. PhD thesis, Carleton University, Jul 2009.

172 Bibliography

[39] L Rosenhead. The formation of vortices from a surface of discontinuity.
Proceedings of the royal society, 1931.

[40] G Birkhoff and J Fisher. Do vortex sheets roll up? In Rendiconti del
Circolo matematico di Palermo, 1959.

[41] FR Hama. Streaklines in a perturbed shear flow. Physics of Fluids, 1962.

[42] B Couët, O Buneman, and A Leonard. Simulation of three-dimensional
incompressible flows with a vortex-in-cell method. Journal of Computa-
tional Physics, 1981.

[43] L Greengard and V Rokhlin. A fast algorithm for particle simulations.
Journal of Computational Physics, 1987.

[44] J Barnes and P Hut. A hierarchical o(n log n) force-calculation algorithm.
Nature, Dec 1986.

[45] P Ploumhans, GSWinckelmans, JK Salmon, A Leonard, and MSWarren.
Vortex methods for direct numerical simulation of three-dimensional bluff
body flows: application to the sphere at re = 300, 500, and 1000. Journal
of Computational Physics, 2002.

[46] GS Winckelmans. Encyclopedia of Computational Mechanics, chapter
Vortex methods. Willey, 2004.

[47] CK Birdsall and D Fuss. Clouds-in-clouds, clouds-in-cells physics for
many-body plasma simulation. Journal of Computational Physics, 1969.

[48] JT Beale and A Majda. Rates of convergence for viscous splitting of the
navier-stokes equations. Mathematics of Computation, 1981.

[49] GH Cottet and S Gallic. Une méthode de décomposition pour une équa-
tion de type convection-diffusion combinant résolution explicite et méth-
ode particulaire. Compte Rendu de l’Académie des Sciences Paris, 1983.

[50] P Degond and S Mas-Gallic. The weighted particle method for
convection-diffusion equations part 1:the case of an isotropic viscosity.
Mathematics of Computation, Okt 1989.

[51] JD Eldredge, A Leonard, and T Colonius. A general deterministic treat-
ment of derivatives. Journal Computational Physics, 2002.

[52] G Cottet and PD Koumoutsakos. Vortex methods : theory and practice.
Cambridge University Press, 2000.

[53] GS Winckelmans and A Leonard. Contributions to vortex particle meth-
ods for the cmoputation of three-dimensional incompressible unsteady
flows. Journal of Computational Physics, 1993.

[54] LB Lucy. A numerical approach to the testing of the fission hypothesis.
The Astronomical Journal, Dec 1977.

Bibliography 173

[55] RA Gingold and JJ Monaghan. Smoothed particle hydrodynamics : the-
ory and application to non-spherical stars. Journal of Mechanics and
Physics of Solids, 1977.

[56] MJ Gourlay. Fluid simulation for video games, 2016.

[57] A Leonard. Vortex methods for flow simulation. Journal of computational
physics, 1980.

[58] C Greengard. The core spreading vortex method approximates the wrong
equation. Journal of Computational Physics, 1985.

[59] AJ Chorin. Numerical study of slightly viscous flow. Journal of fluid
mechanics, 1973.

[60] JE Fromm. A method for computing nonsteady, incompressible, viscous
fluid flows. Technical Report LA-2910, Los Alamos National Laboratory,
May 1963.

[61] JE Fromm and FH Harlow. Numerical solution of the problem of vortex
street development. Physics of Fluids, Jul 1963.

[62] RE Brown. Rotor wake modeling for flight dynamic simulation of heli-
copters. AIAA Journal, Jan 2000.

[63] RE Brown and AJ Line. Efficient high-resolution wake modeling using
the vorticity transport equation. AIAA Journal, Jul 2005.

[64] F Scheurich, TM Fletcher, and RE Brown. The influence of blade cur-
vature and helical blade twist on the performance of a vertical-axis wind
turbine. In Proceedings of the 48th AIAA Aerospace Sciences Meeting,
2010.

[65] TM Fletcher and RE Brown. Simulation of wind turbine wake interaction
using the vorticity transport model. Wind Energy, Dec 2009.

[66] WH Reed and TR Hill. Triangular mesho methods for the neutron trans-
port equation. Technical Report LA-UR-73-479, Los Alamos National
Laboratory, 1973.

[67] JG Liu and CW Shu. A high-order discontinuous galerkin method for 2d
incompressible flows. Journal of Computational Physics, 2000.

[68] L Gaul, M Kögl, and MWagner. Boundary element methods for engineers
and scientists. Springer, 2003.

[69] JL Hess and AMO Smith. Calculation of nonlifting potential flow about
arbitrary three-dimensional bodies. Journal of ship research, Sep 1964.

[70] L Škerget, M Hriberšek, and G Kuhn. Computational fluid dynamics by
boundary-domain integral method. International Journal for numerical
methods in engineering, 1999.

174 Bibliography

[71] Steven Schochet. The point-vortex method for periodic weak solutions
of the 2-d euler equations. Communications on Pure and Applied Math-
ematics, Sep 1996.

[72] OH Hald. Convergence of vortex methods for euler’s equations. ii. SIAM
Journal of Numerical Analysis, 1979.

[73] Y Nakamura, A Leonard, and P Spalart. Vortex simulation of an inviscid
shear layer. In Proceedings of AIAA/ASMA 3rd Joint thermophysics,
Fluids, Plasma and Heat Transfer Conference, Jun 1982.

[74] GH Cottet and S Mas-Gallic. A particle method to solve the navier-stokes
system. Numerische Mathematik, 1990.

[75] DI Pullin. Contour dynamics methods. Annual Review of Fluid Mechan-
ics, 1992.

[76] GS Deem and NJ Zabusky. Vortex waves: Stationary "v states", inter-
actions, recurrence, and breaking. Physical Review Letters, 1978.

[77] NJ Zabusky, MH Hughes, and KV Roberts. Contour dynamics for the
euler equations in two dimensions. Journal of Computational Physics,
1979.

[78] DG Dritschel. Contour dynamics and contour surgery: numerical al-
gorithms for extended, high-resolution modelling of vortex dynamics in
two-dimensional, inviscid, incompressible flows. Computer Physics Re-
ports, 1989.

[79] A Leonard. Numerical simulation of interacting three-dimensional vortex
filaments. In Proceedings of 4th International Conference on Numerical
Methods in Fluid Dynamics, Jun 1974.

[80] AJ Chorin. Vortex models and boundary layer instability. SIAM Journal
of Scientific Computing, 1980.

[81] H Lamb. Hydrodynamics (4th edition). Cambridge University Press,
1916.

[82] T von Karman. Über den mechanismus des widerstandes, den
ein bewegter körper in einer flüssigkeit erfährt. Nachrichten von
der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse, 1911.

[83] JCS Meng and JAL Thomson. Numerical studies of some nonlinear hy-
drodynamic problems by discrete vortex element methods. Journal of
Fluid Mechanics, 1978.

[84] GR Baker, DI Meiron, and SA Orszag. Vortex simulations of the rayleigh-
taylor instability. Physics of Fluids, Aug 1980.

[85] GR Baker, DI Meiron, and SA Orszag. Generalized vortex methods for
free-surface flow problems. Journal of Fluid Mechanics, 1982.

Bibliography 175

[86] G Tryggvason and H Aref. Numerical experiments on hele shaw flow with
a sharp interface. Journal of Fluid Mechanics, 1983.

[87] G Tryggvason. Numerical simulations of the rayleigh-taylor instability.
Journal of Computational Physics, 1989.

[88] C Greengard. Convergence of the vortex filament method. Mathematics
of Computation, Oct 1986.

[89] JT Beale and A Majda. Vortex methods i : Convergence in three dimen-
sions. Mathematics of Computation, Jul 1982.

[90] JT Beale. A convergent 3-d vortex method with grid-free stretching.
Mathematics of Computation, 1986.

[91] GH Cottet and P Poncet. Advances in direct numerical simulations of 3d
wall-bounded flows by vortex-in-cell methods. Journal of Computational
Physics, 2003.

[92] GH Cottet, B Michaux, S Ossia, and G Vanderlinden. A comparison of
spectral and vortex methods. Journal of Computational Physics, 2002.

[93] WM van Rees, A Leonard, DI Pullin, and P Koumoutsakos. A comparison
of vortex and pseudo-spectral methods for the simulation of periodic vor-
tical flows at high reynolds numbers. Journal of Computational Physics,
Dec 2010.

[94] Roger Cocle, Grégoire Winckelmans, and Goéric Daeninck. Combining
the vortex-in-cell and parallel fast multipole methods for efficient domain
decomposition simulations. Journal of Computational Physics, Oct 2007.

[95] A Kosior and H Kudela. Parallel computations on gpu in 3d using the
vortex particle method. Computers & Fluids, 2012.

[96] P Ploumhans and GS Winckelmans. Vortex methods for high-resolution
simulations of viscous flow past bluff bodies of general geometry. Journal
of Computational Physics, Nov 2000.

[97] MS Shadloo, G Oger, and D Le Touzé. Smoothed particle hydrodynam-
ics method for fluid flows, towards industrial applications: Motivations,
current state, and challenges. Computers and Fluids, Mai 2016.

[98] W Dehnen and H Aly. Improving convergence in smoothed particle hy-
drodynamics simulations without pairing instability. Monthly Notices of
the Royal Astronomical Society, 2012.

[99] Q Zhu, L Hernquist, and Y Li. Numerical convergence in smoothed
particle hydrodynamics. The Astrophysical Journal, Feb 2015.

[100] E Branlard, G Papadakis, M Gaunaa, G Winckelmans, and TJ Larsen.
Aeroelastic large eddy simulations using vortex methods : unfrozen tur-
bulent turbulent and sheared. Proceedings of Wake Conference 2015, May
2015.

176 Bibliography

[101] P Chatelain, S Backaert, G Winckelmans, and S Kern. Large eddy sim-
ulation of wind turbine wakes. Journal of computational physics, 2011.

[102] A Zervos, S Huberson, and A Hemon. Three-dimensional free wake calcu-
lation of wind turbine wakes. Journal of wind engineering and industrial
aerodynamics, 1988.

[103] M Gazzola, P Chatelain, WM van Rees, and P. Koumoutsakos. Simula-
tions of single and multiple swimmers with non-divergence free deforming
geometries. Journal of computational Physics, 2011.

[104] A Mohammadian and J Marshall. A vortex in cell model for quasi-
geostrophic, shallow water dynamics on the sphere. Ocean Modelling,
2010.

[105] A Selle, N Rasmussen, and R Fedkiw. A vortex particle method for
smoke, water and explosions. ACM Transactions on Graphics, 2005.

[106] S Shakouchi, S Shimada, and T Uchiyama. Numerical study of the mixing
of density-stratified fluid with a jet. Journal of Mechanics Engineering
and Automation, 2014.

[107] K Luo, C Shao, Y Yang, and J Fan. A mass conserving level set method
for detailed numerical simulation of liquid atomization. Journal of Com-
putational Physics, Jun 2015.

[108] N Balcazar, L Jofre, O Lehmkuhl, J Castro, and J Rigola. A finite-
volume/level set method for simulating two-phase flows on unstructured
grids. International Journal of Multiphase flow, May 2014.

[109] A Colagrossi and M Landrini. Numerical simulation of interfacial flows
by smoothed particle hydrodynamics. Journal of Computational Physics,
2003.

[110] JA Zufiria. Vortex-in-cell simulation of bubble competition in a rayleigh-
taylor instability. Physics of Fluids, Jul 1988.

[111] TS Lundgren and P Koumaoutsakos. On the generation of vorticity at a
free surface. Journal of Fluid Mechanics 382, 351-366, 1999.

[112] JE Fromm. Numerical calculation of the fluid dynamics of drop-on-
demand jets. IBM Journal of Research and Development, 1984.

[113] CR Anderson. A vortex method for flows with slight density variations.
Journal of Computational Physics, 1985.

[114] F Thirifay and G Winckelmans. Development of a lagrangian method for
combustion and application to the planar methane-air jet diffusion flame.
Journal of Turbulence, Dec 2002.

[115] F Thirifay. Simulation of non-reactive and reactive shear flows using La-
grangian particle methods. PhD thesis, Université catholiques de Louvain,
2006.

Bibliography 177

[116] JH Walther and G Morgenthal. An immersed interface method for the
vortex-in-cell algorithm. Journal of Turbulence, 2002.

[117] G Morgenthal and JH Walther. An immersed interface method for the
vortex-in-cell algorithm. Computers and Structures, Mar 2007.

[118] Y Marichal, P Chatelain, and G Winckelmans. An immersed interface
solver for the 2-D unbounded poisson equation and its application to
potential flow. Computers and Fluids, under review.

[119] Y Marichal, P Chatelain, and G Winckelmans. Immersed interface inter-
polation schemes for particle-mesh methods. Journal of Computational
Physics, Sep 2016.

[120] T Uchiyama and Y Yoshii. Numerical simulation of bubbly flow by vortex
in cell method. Procedia IUTAM, 2015.

[121] T Uchiyama, Y Yoshii, and H Hamada. Direct numerical simulation of
a turbulent channel flow by an improved vortex in cell method. Interna-
tional Journal of Numerical Methods for Heat & Fluid Flow, Dec 2013.

[122] JD Eldredge, T Colonius, and A Leonard. A vortex particle method for
two-dimensional compressible flow. Journal of Computational Physics,
2002.

[123] IF Sbalzarini, JH Walther, M Bergdorf, SE Hieber, EM Kotsalis, and
P Koumoutsakos. Ppm - a highly efficient parallel particle-mesh li-
brary for the simulation of continuum systems. Journal of Computational
Physics, Jan 2006.

[124] F Hohl and RW Hockney. A computer model of disks of stars. Journal
of Computational Physics, 1969.

[125] H Abe, N Sakairi, and R Itatani. High-order spline interpolations in the
particle simulation. Journal of Computational Physics, 1986.

[126] JJ Monaghan. Extrapolating b-splines for interpolation. Journal of com-
putational physics, 1985.

[127] P Koumoutsakos, A Leonard, and F Pépin. Boundary conditions for
viscous vortex methods. Journal of Computational Physics, 1994.

[128] F Pépin. Simulation of the flow past an impulsively started cylinder using
a discrete vortex method. PhD thesis, California Institute of Technology,
May 1990.

[129] FH Harlow. A machine calculation method for hydrodynamic problems.
Technical Report LAMS-1956, Los Alamos National Laboratory, Nov
1955.

[130] AM Tartakovsky, N Trask, K Pan, B Jones, W Pan, and JR Williams.
Smoothed particle hydrodynamics and its applications for multiphase
flow and reactive transport in porous media. Computational Geosciences,
Aug 2016.

178 Bibliography

[131] S Osher and JA Sethian. Fronts propagating with curvature dependent
speed: Algorithhms based on hamilton-jacobi formulations. Journal of
Computational Physics 79 (12-49), 1988.

[132] JA Sethian. Level Set Methods and Fast Marching Methods. Cambridge
Monographs on applied and computational Mathematics, 1999.

[133] SJ Osher and RP Fedkiw. Level Set Methods and dynamic implicit sur-
faces. Springer, 2000.

[134] SJ Osher and RP Fedkiw. Level set methods: an overview and some
recent results. Journal of Computational Physics 169 (463-502), Sep
2000.

[135] JA Sethian and P Smereka. Level set methods for fluid interfaces. Annual
Review of Fluid Mechanics, Jan 2003.

[136] JA Sethian. An analysis of flame propagation. PhD thesis, University of
California at Berkeley, 1982.

[137] JA Sethian. Theory, algorithms, and applications of level set methods
for propagating interfaces. Acta Numerica, 1996.

[138] JA Sethian. Level set methods : An act of violence ; evolving interfaces
in geometry, fluid mechanics, computer vision and materials sciences.
American scientist, 1997.

[139] J Li. Calcul d’interface affine par morceaux (piecewise linear interface
calculation). Compte Rendu de l’Académie des Sciences Paris, 1995.

[140] Y Renardy and M Renardy. Prost: A parabolic reconstruction of sur-
face tension for the volume-of-fluid method. Journal of Computational
Physics, 2002.

[141] F Xiao, Y Honma, and T Kono. A simple algebraic interface capturing
scheme using hyperbolic tangent function. Physics of Fluids, 2005.

[142] F Xiao, S Ii, and C Chen. Revisit to the thinc scheme: A simple algebraic
vof algorithm. Physics of Fluids, 2011.

[143] L Jofre, O Lehmkuhl, J Castro, and A Oliva. A plic-vof implementa-
tion on parallel 3d unstructured meshes. In 5th European Conference on
Computational Fluid Dynamics, Jun 2010.

[144] M Sussman and EG Puckett. A coupled level set and volume-of-fluid
method for computing 3d and axisymmetric incompressible two-phase
flows. Journal of Computational Physics, 2000.

[145] D Enright, R Fedkiw, J Ferziger, and I Mitchell. A hybrid particle level
set method for improved interface capturing. Journal of Computational
Physics, 2002.

Bibliography 179

[146] K Yokoi. Efficient implementation of thinc scheme: A simple and prac-
tical smoothed vof algorithm. Journal of Computational Physics, 2007.

[147] S Ii, K Sugiyama, S Takeuchi, S Takagi, Y Matsumoto, and F Xiao.
An interface capturing method with a continuous function: The thinc
method with multi-dimensional reconstruction. Journal of Computational
Physics, Dec 2011.

[148] E Olsson and G Kreiss. A conservative level set method for two phase
flow. Journal of Computational Physics 210 (225-246), Jun 2005.

[149] E Marchandise, P Geuzaine, N Chevaugeom, and JF Remacle. A sta-
bilised finite element method using a discontinuous level set approach for
the computation of bubble dynamics. Journal of Computational Physics,
Jan 2007.

[150] R Chiodi and O Desjardins. A reformulation of the conservative level set
reinitialization equation for accurate and robust simulation of complex
multiphase flows. Journal of Computation Physics, Aug 2017.

[151] E Olsson, G Kreiss, and S Zahedi. A conservative level set method for
two phase flow ii. Journal of Computational Physics 210 (225-246), Jun
2007.

[152] T Wacławczyk. A consistent solution of the re-initialization equation in
the conservative level-set method. Journal of Computational Physics, Jul
2015.

[153] O Desjardins, V Moureau, and H Pitsch. An accurate conservative level
set / ghost fluid method for simulating turbulent atomization. Journal
of computational physics, Jun 2008.

[154] JA Sethian D Adalsteinsson. The fast construction of extension velocities
in level set methods. Journal of computational physics, 1999.

[155] JO McCaslin, E Courtine, and O Desjardins. A fast marching approach
to multidimensional extrapolation. Journal of Computational Physics,
2014.

[156] S Zahedi, K Gustavsson, and G Kreiss. A conservative level set method
for contact line dynamics. Journal of computational physics, Jun 2009.

[157] W Ren, D Hu, and W E. Continuum models for the contact line problem.
Physics of Fluids, Oct 2010.

[158] E Kirkinis and SH Davis. Moffatt vortices induced by the motion of a
contact line. Journal of Fluid Mechanics, 2014.

[159] Mijail Febres and Dominique Legendre. Existence of moffatt vortices at
a moving contact line between two fluids. Physical Review Fluids, Nov
2017.

180 Bibliography

[160] D Legendre and M Maglio. Comparison between numerical models for
the simulation of moving contact lines. Computers & Fluids, 2015.

[161] S Afkhami, S Zaleski, and M Bussmann. A mesh-dependant model for
applying dynamic contact angles to vof simulations. Journal of Compu-
tational Physics, 2009 2009.

[162] OV Voinov. Hydrodynamics of wetting. Izvestiya Akademii Nauk SSSR,
Mekhanika Zhidkosti i Gaza, Sep 1976.

[163] R. G. Cox. The dynamics of the spreading of liquids on a solid surface.
part 1. viscous flow. Journal of Fluid Mechanics, 1986.

[164] CW Shu. High order weighted essentially non-oscillatory schemes for
convection dominated problems. society for industrial and applied math-
ematics 51-1 (82-126), Nov 2009.

[165] MW Jones, JA Bærentzen, and M Sramek. 3d distance fields: a survey
of techniques and applications. IEEE Transactions on Visualization and
Computer Graphics, Jul 2006.

[166] JA Sethian. A fast marching level set method for monotically advancing
fronts. Proceeding of the National Academy of Science, 1996.

[167] L Yatziv, A Bartesaghi, and G Sapiro. O(n) implementation of the fast
marching algorithm. Journal of Computational Physics, Sep 2005.

[168] M Herrmann. A domain decomposition parallelization of the fast march-
ing method. Annual Briefs Center for Turbulence Research, 2003.

[169] M Breuß, E Cristiani, P Gwosdek, and O Vogel. An adaptive domain-
decomposition technique for parallelization of the fast marching method.
Applied Mathematics and Computations, 2011.

[170] M Detrixhe, F Gibou, and C Min. A parallel fast sweeping method for
the eikonal equation. Journal of Computational Physics, Dec 2012.

[171] D Peng, B Merriman, S Osher, H Zhao, and M Kan. A pde-based fast
local level set method. Journal of Computational Physics 155 (410-438),
Jul 1999.

[172] G Russo and P Smereka. A remark on computing distance functions.
Journal of computational physics 163 (51-67), May 2000.

[173] E Rouy and A Tourin. A viscosity solutions approach to shape-from-
shading. SIAM Journal on Numerical Analysis, Jun 1992.

[174] Paul Vigneaux. Méthodes Level Set pour des problèmes d’interface en
microfluidique. PhD thesis, Université de Bordeaux, Jun 2008.

[175] D Adalsteinsson and JA Sethian. A fast level set method for propagating
interfaces. Journal of Computational Physics 188 (269-277), Oct 1994.

Bibliography 181

[176] O Desjardins JO McCaslin. A localized re-initialization equation for the
conservative level-set method. Journal of Computational Physics 262
(408-426), Jan 2014.

[177] P Gómez, J Hernández, and J López. On the reinitialization procedure
in a narrow-band locally refined level set method for interfacial flows.
International journal for numerical methods in engineering, 2005.

[178] M Herrmann. A balanced force refined level set grid method for two-
phase flows on unstructured flow solver grids. Journal of Computational
Physics, Nov 2007.

[179] JU Brackbill, D Kothe, and C Jemach. A continuum method for modeling
surface tension. Journal of Computational Physics, July 1991.

[180] AK Tornberg and B Engquist. A finite element based level-set method for
multiphase flow applications. Computing and Visualization in Science,
2000.

[181] K Yokoi, R Onishi, X Deng, and M Sussman. Density-scaled balanced
continuum surface force model with a level set based curvature interpo-
lation technique. International Journal of Computational Methods, 2016.

[182] M Coquerelle and S Glockner. A fourth-order accurate curvature compu-
tation in a level set framework for two-phase flows subjected to surface
tension forces. Journal of Computational Physics, 2015.

[183] P Macklin and J Lowengrub. An improved geometry-aware curvature dis-
cretisation for level set methods : Application to tumor growth. Journal
of Computational Physics, 2005.

[184] KY Lervåg, B Müller, and ST Munkejord. Calculation of the interface
curvature and normal vector with the level-set method. Computers and
Fluids, 2013.

[185] M Kang, RP Fedkiw, and XD Liu. A boundary condition capturing
method for multiphase incompressible flow. Journal of Scientific Com-
puting, 2000.

[186] H Jeanmart and G Winckelmans. Investigation of eddy-viscosity models
modified using discrete filters: a simplified "regularized variational mul-
tiscale model" and an "enhanced field model". Physics of Fluids, 2007.

[187] JP Boris and DL Book. Flux-corrected transport i. shasta, a fluid trans-
port algorithm that works. Journal of Computational Physics, 1973.

[188] H Liu, Z Qi, and M Xu. Numerical simulation of fluid flow and interfacial
behavior in threephase argon stirred ladles with one plug and dual plugs.
Steel Research International, 2011.

[189] PA Berthelsen and T Ytrehus. Stratified smooth two-phase flow using
the immersed interface method. Computers & Fluids, Feb 2007.

182 Bibliography

[190] T Ye, W Shyy, CF Tai, and JN Chung. Assessment of sharp- and
continuous-interface methods for drop in static equilibrium. Computers
and Fluids, 2004.

[191] Z Li and MC Lai. The immersed interface method for the navier-stokes
equations with singular forces. Journal of Computational Physics, 2001.

[192] Z Li and K Ito. The immersed interface method. SIAM, 2006.

[193] R Fedkiw, T Aslam, B Merriman, and S Osher. A non-oscillatory eulerian
approachto interfaces in multimaterial flows (the ghost fluid method).
Journal of Computational Physics, 1999.

[194] W Bo and JW Grove. A volume of fluid method based ghost fluid method
for compressible multi-fluid flows. Computers & Fluids, 2013.

[195] AJ Williams III and MG Briscoe. Observations of shear and vertical
stability from a neutrally buoyant float. Journal of Geophysical Research,
Oct 1990.

[196] IJ Parrish and E Quataert. Nonlinear simulations of the heat flux driven
buoyancy instability and its implications for galaxy clusters. The Astro-
physical Journal Letters, 2008.

[197] S Gottlieb and CW Shu. Total variation diminishing runge-kutta
schemes. Mathematics of computation 221-67 (73-85), Jan 1998.

[198] S Gottlieb, CW Shu, and E Tadmor. Strong stability-preserving high-
order time discretization methods. SIAM Review, 2001.

[199] L Ferracina and M Spijker. Stepsize restrictions for the total-variation-
diminishing property in general runge–kutta methods. SIAM Journal of
Numerical Analysis, 2004.

[200] S Gottlieb. On high order strong stability preserving runge–kutta and
multi step time discretizations. Journal of Scientific Computing, Nov
2005.

[201] ST Zalesak. Fully multidimensional flux-corrected transport algorithms
for fluids. Journal of computational physics, 1979.

[202] WJ Rider and DB Kothe. Stretching and tearing interface tracking meth-
ods. In Proceedings of the American Institute of Aeronautics and Astro-
nautics 12th Computational Fluid Dynamics Conference, Jun 1995.

[203] A Albadawi, DB Donoghue, AJ Robinson, DB Murray, and YMC De-
lauré. Influence of surface tension implementation in volume of fluid and
coupled volume of fluid with level set methods for bubble growth and
detachment. International Journal of multiphase flow, Feb 2013.

[204] M Owkes and O Desjardins. A discontinuous galerkin conservative level
set scheme for interface capturing in multiphase flows. Journal of Com-
putational Physics, May 2013.

Bibliography 183

[205] P Trontin, S Vincent, JL Estivalezes, and JP Caltagirone. A subgrid
computation of the curvature by a particle/level-set method. application
to a front-tracking/ghost-fluid method for incompressible flows. Journal
of Computational Physics, Jul 2012.

[206] M Sussman, P Smereka, and S Osher. A level set approach for computing
solutions to incompressible two-phase flow. Journal of computational
physics 114 (146-159), Mar 1994.

[207] A Prosperetti. Motion of two superposed viscous fluids. Physics of fluids,
1981.

[208] S Hysing, S Turet, D Kuzmin, N Parolini, E Burman, S Ganesan, and
L Tobiska. Quantitative benchmark computations of two-dimensional
bubble dynamics. International journal of numerical methods in fluids,
2009.

[209] Lord Rayleigh. Investigation of the character of the equilibrium of an in-
compressible heavy fluid of variable density. In Proceedings of the London
Mathematical Society, Apr 1883.

[210] Geoffrey Taylor. The instability of liquid surfaces when accelerated in a
direction perpendicular to their planes i. Proceedings of the royal society
of london, 1950.

[211] JC Martin and WJ Moyce. Part iv an experimental study of the collapse
of liquid columns on a rigid horizontal plane. Philosophical Transactions
of the Royal Society of London. Series A, Mathematical and Physical
Sciences, Mar 1952.

[212] PK Stansby, A Chegini, and TCD Barnes. The initial stages of dam-break
flow. Journal of Fluid Mechanics, 1998.

[213] C Hu and M Sueyoshi. Numerical simulation and experiment on dam
break problem. Journal of Marine Science and Application, 2010.

[214] RJF Aleixo. Experimental study of the early stages of a dam-break flow
over fixed and mobile beds. PhD thesis, Université catholique de Louvain,
Jan 2013.

[215] M Pfister and WH Hager. History and significance of the morton number
in hydraulic engineering. Journal of hydraulic engineering, 2014.

[216] DL Brown, R Cortez, and ML Minion. Accurate projection methods for
the incompressible navier–stokes equations. Journal of Computational
Physics, (168), 2000.

[217] EG Puckett, AS Almgren, JB Bell, DL Marcus, and WJ Ridier. A high-
order projection method for tracking fluid interfaces in variable density
incompressible flows. Journal of Computational Physics, 1997.

[218] A Prosperetti. Viscous effects on small-amplitude surface waves. Physics
of fluids, 1976.

184 Bibliography

[219] D Legrand. Failles meltdown/spectre : Intel prépare des mises à jour avec
ses partenaires pour le 9 janvier. https://www.nextinpact.com/news/
105909-failles-securite-et-kpti-intel-publie-courte-reponse
-fin-embargo-9-janvier.htm, Jan 2018. (NextInpact article).

[220] X Cheng and NI Tak. Investigation on turbulent heat transfer to lead-
bismuth eutectic flows in circular tubes for nuclear applications. Nuclear
Engineering and Design, 2006.

[221] L Bricteux, M Duponcheel, M Manconi, and Y Bartosiewicz. Numerical
prediction of turbulent heat transfer at low prandtl number. Journal of
Physics, 2012.

[222] P Chatelain. Contributions to the three-dimensional vortex element
method and spinning bluff body flows. PhD thesis, California Institute
of Technology, Dec 2004.

[223] R Courant, K Friedrichs, and H Lewy. Über die partiellen differenzen-
gleichungen der mathematischen physik. Mathematische annalen, 1928.

[224] J von Neumann and RD Richtmyer. A method for the numerical calcu-
lation of hydrodynamic shocks. Journal of Applied Physics, 1950.

[225] AN Tikhonov and AA Samarskii. Homogeneous differences schemes on
non-uniform nets. USSR Computational Mathematics and Mathematical
Physics, 1962.

[226] JW Cooley and JW Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, Apr 1965.

[227] AJ Chorin. The numerical solution of the navier-stokes equations for
an incompressible fluid. Bulletin of the American Mathematical Society,
1967.

[228] HL Berk, CE Nielsen, and KV Roberts. Phase space hydrodynamics of
equivalent nonlinear systems: experimental and computational observa-
tions. Physics of Fluids, Apr 1970.

[229] JE Fromm and FH Harlow. Numerical solution of the problem of vortex
street development. Physics of Fluids, Jul 1963.

[230] RH Levy and RW Hockney. Computer experiments on low-density
crossed-field electron beams. Physics of Fluids, Apr 1968.

[231] FH Harlow and JE Welch. Numerical calculation of timedependent vis-
cous incompressible flow of fluid with free surface. Physics of Fluids,
1965.

[232] CW Hirt, AA Amsden, and JL Cook. An arbitrary lagrangian-eulerian
computing method for all flow speeds. Journal of Computational Physics,
1974.

https://www.nextinpact.com/news/105909-failles-securite-et-kpti-intel-publie-courte-reponse
https://www.nextinpact.com/news/105909-failles-securite-et-kpti-intel-publie-courte-reponse
-fin-embargo-9-janvier.htm

Bibliography 185

[233] JK Fink and L Leibowitz. Thermodynamic and transport properties
of sodium liquid and vapor. Technical Report ANL-RE-95-2, Argonne
National Laboratory, Jan 1995.

[234] Many authors. Handbook on Lead-bismuth Eutectic Alloy and Lead
properties, materials compatibility, thermal-hydraulics and technologies.
Number NEA-6195 in Nuclear Energy Agency Report. Nuclear Energy
Agency OECD, Jan 1995.

[235] RB Stewart and RT Jacobsen. Thermodynamic properties of argon from
triple point to 1200k with pressures to 1000mpa. Journal of Physical and
Chemical Reference Data, 1989.

[236] GC Maitland and EB Smith. Critical reassessment of viscosities of 11
common gases. Journal of Chemical and Engineering Data, 1972.

[237] H Ziebland. Thermal conductivity of fluid substances. Pure & Applied
Chemistry, 1977.

[238] EW Lemmon and RT Jacobsen. Viscosity and thermal conductivity equa-
tions for nitrogen, oxygen, argon, and air. International Journal of ther-
mophysics, Jan 2004.

186 Bibliography

Appendix A

Timeline of some methods

187

188 Appendix A. Timeline of some methods

-

LAGRANGIAN METHODS
LINEAGE

VORTEX METHODS
LINEAGE CFD MILESTONES

CFL stability constraint
Courant Friedrich Lewy 1928 [223]

Von Neumann stability analysis
von Neumann 1950 [224]

Krylov subspace iteration
Lanczos Hestenes Stiefel early 1950s

Finite volume method
Tikhonov 1962 [225]

Fast Fourier Transform
Cooley 1965 [226]

Velocity projection
Chorin 1967 [227]

Analogy between hydrodynamics,
plasmas and astrophysics

Berk 1970 [228]

Discontinuous Galerkin
Reed 1973 [66]

Analytical point vortices
e.g. von Karman 1911 [82]

Method of point vortices
Rosenhead 1931 [39]

First method of point vortices
implemented on computer

Birkhoff 1959 [40], Hama 1962 [41]

Vorticity finite differences
Fromm 1963 [229] ([60])

Boundary-element method
(aka “panel method”)

Hess 1964 [69]

Particle-mesh solver
(plasmas)

Levy 1968 [230]Cloud-in-Cells
interpolation (plasmas)

Birdsall 1969 [47]

Vortex-in-Cell
Christiansen 1973 [33]

(1970 [1])

Vorticity Transport Model
Brown 2000 [62]

Early velocity-pressure lagrangian
method (shock propagation)

von Neumann 1944 [24]

Particle-in-Cell
Harlow 1957 [32] (1955 [129])

Marker-in-Cell
Harlow 1965 [231] (1966 [29])

Arbitrary-Lagrangian-Eulerian
Hirt 1974 [232]

Appendix B

Weno5 schemes

This appendix specifies the Weighted Essentially Non-Oscillatory (WENO)
schemes used for level set advection and reinitialisation. For more general
information on WENO schemes, refer to Shu’s 2009 review article [164].

Algorithm 5: Computes upwind/downwind space derivatives using
WENO5 schemes

1 D−x q← weno5Diffdwn(qi−3,j , qi−2,j , qi−1,j , qi,j , qi+1,j , qi+2,j)
2 D+

x q← weno5Diffupw(qi−2,j , qi−1,j , qi,j , qi+1,j , qi+2,j , qi+3,j)
3 D−y q← weno5Diffdwn(qi,j−3 , qi,j−2 , qi,j−1 , qi,j , qi,j+1 , qi,j+2)

4 D+
y q← weno5Diffupw(qi,j−2 , qi,j−1 , qi,j , qi,j+1 , qi,j+2 , qi,j+3)

5 return
{
D−x q , D

+
x q , D

−
y q , D

+
y q
}

Algorithm 6: weno5Diffdwn(qi−3, qi−2, qi−1, qi, qi+1, qi+2)
Downwind WENO5 differentiation

1 Compute derivative of cell-averaged level set{
Dxqi+ 1

2
+δi,j

}
δi∈[−3,+1]

←
{

qi+1+δi,j−qi+δi,j

hx

}
δi∈[−3,+1]

2 Reconstruct level set derivative

Dxq← weno5Reconstructdwn

({
Dxqi+ 1

2
+δi,j

}
δi∈[−3,+1]

)

3 return Dxq

189

190 Appendix B. Weno5 schemes

Algorithm 7: weno5Diffupw(qi−2, qi−1, qi, qi+1, qi+2, qi+3)
Upwind WENO5 differentiation

1 Compute derivative of cell-averaged level set{
Dxqi+ 1

2
+δi,j

}
δi∈[−2,+2]

←
{

qi+1+δi,j−qi+δi,j

hx

}
δi∈[−2,+2]

2 Reconstruct level set derivative

Dxq← weno5Reconstructupw

({
Dxqi+ 1

2
+δi,j

}
δi∈[−2,+2]

)

3 return Dxq

Algorithm 8: weno5Reconstructdwn
(
qi− 5

2
, qi− 3

2
, qi− 1

2
, qi+ 1

2
, qi+ 3

2

)

Downwind WENO5 reconstruction

1 Compute three different 3rd order approximations for q(xi)
qi,A ← + 1

3
qi− 5

2
− 7

6
qi− 3

2
+ 11

6
qi− 1

2

qi,B ← − 1
6
qi− 3

2
+ 5

6
qi− 1

2
+ 1

3
qi+ 1

2

qi,C ← + 1
3
qi− 1

2
+ 5

6
qi+ 1

2
− 1

6
qi+ 3

2

2 Compute smoothness indicators for each sub-stencil

βA ← + 13
12

(
+qi− 5

2
− 2 qi− 3

2
+ qi− 1

2

)2
+ 1

4

(
+qi− 5

2
− 4 qi− 3

2
+ 3 qi− 1

2

)2

βB ← + 13
12

(
+qi− 3

2
− 2 qi− 1

2
+ qi+ 1

2

)2
+ 1

4

(
+qi− 3

2
− qi+ 1

2

)2

βC ← + 13
12

(
+qi− 1

2
− 2 qi+ 1

2
+ qi+ 3

2

)2
+ 1

4

(
+qi+ 3

2
− 4 qi+ 1

2
+ 3 qi− 1

2

)2

3 Compute non-linear weights for each sub-stencil

wA ←
1

10

1

(1e−6 + βA)2

wB ←
6

10

1

(1e−6 + βB)2

wC ←
3

10

1

(1e−6 + βC)2

4 Combine sub-stencils to approximate q(xi) up to 5th order accuracy
qi ← 1

wA+wB+wC
(wA qi,A + wB qi,B + wC qi,C)

5 Return output
return qi

Algorithm 9: weno5Reconstructupw
(
qi− 3

2
, qi− 1

2
, qi+ 1

2
, qi+ 3

2
, qi+ 5

2

)

Upwind WENO5 reconstruction

1 qi ← weno5Reconstructdwn

(
Dxqi+ 5

2
, Dxqi+ 3

2
, Dxqi+ 1

2
, Dxqi− 1

2
, Dxqi− 3

2

)

2 return qi

Appendix C

Algorithms

191

192 Appendix C. Algorithms

C.1 Level set

C.1.1 Hamilton-Jacobi reinitialization

Algorithm 10: Level set reinitialization

for τ ← 0 to δτ step hτ do
for each node (i, j) in grid Ωhhh do

1 Compute sign function

S←
Φn

i,j√
Φn

i,j
2 + (∇Φn.hx)2

2 Compute upwind & downwind derivatives of level set{
D−x Φ, D

+
x Φ, D

−
y Φ, D

+
y Φ
}
← computeSpaceDerivatives(Φn)

3 Compute norm of gradient
if Φ > 0 then
|DxΦ| ← max(0,+D−x Φ,−D+

x Φ)
|DyΦ| ← max(0,+D−y Φ,−D+

y Φ)

|∇Φ| ←
√
|DxΦ|2 + |DyΦ|2

else if Φ < 0 then
|DxΦ| ← max(0,−D−x Φ,+D+

x Φ)
|DyΦ| ← max(0,−D−y Φ,+D+

y Φ)

|∇Φ| ←
√
|DxΦ|2 + |DyΦ|2

else
|∇Φ| ← 1

4 Compute ∂tΦ
∂tΦ|i,j ← −S (|∇Φ| − 1)

5 Time integrate
Φn+1 ← Φn + ht.∂tΦ

C.1. Level set 193

C.1.2 Fast Marching Method for reinitialization

(a) Initial (b) After one
freeze

(c) After two
freezes

(d) After three
freezes

(e) After four
freezes

Figure C.1: Fast Marching procedure. Shown here are cells containing frozen
() , candidate () and far-away () nodes at their center ; () is
the interface. Cells with nodes that just changed status are marked with black
text. Numbers correspond to the absolute value of level set with a grid spacing
of h = 2.0. Steps (b) (d) and (e) use equation (Eq. 3.26), while step (c) uses
equation (Eq. 3.29).

Nodes are sorted in three groups : the frozen nodes are the nodes that hold
their definitive level set value, candidate nodes are the frozen nodes’ neighbours
and candidate at being the next frozen node, far-away nodes are all the other
nodes that are obviously too far away from any frozen nodes to possibly be
frozen at next time step.

194 Appendix C. Algorithms

Algorithm 11: Fast Marching algorithm : min-heap implementation

Initialization
1 for each node in grid do
2 node.status←if node.isCloseToInterface() then frozen else farAway
3 levelSet(node) ←if node.isFrozen() then abs(levelSet(node)) else

+∞
4 for each frozenNode to grid.frozenNodes() do
5 for each neighbour to frozenNode.neighbours() do
6 neighbour.status ←candidate
7 heap.insert([computeCandidateLevelSet(neighbour), neighbour])

Main loop
8 while heap not empty do
9 levelSetToFreeze, nodeToFreeze ←heap.pop()

Heap may contain same node multiple times
10 if nodeToFreeze.isFrozen() then continue

11 nodeToFreeze.status ←frozen
12 levelSet(nodeToFreeze) ←levelSetToFreeze

13 for each neighbour to nodeToFreeze.neighbours() do
14 neighbour.status ←candidate
15 heap.insert([computeCandidateLevelSet(neighbour), neighbour])

C.2. VeloGrid: Eulerian velocity-pressure solver 195

C.2 VeloGrid: Eulerian velocity-pressure solver
∂uuu∗

∂t
= − (uuu∗ · ∇∇∇)uuu∗ − ∇P

ρε
+

1

ρε
∇∇∇ ·

[
µε

(
∇uuu∗ + (∇uuu∗)T

)]

+

(
1− ρext

ρε

)
ggg − δε(Φ)σ

κ

ρε
nnn

(C.1)

Algorithm 12: Main structure of VeloGrid solver

1 Compute fluids’ properties

ρε ←
1

1
ρint

+ Hε(Φ) (1
ρext
− 1
ρint

)

µε ← µint + Hε(Φ) (µext − µint)
2 Compute interface’s geometrical information

nnn← ∇Φ
‖∇Φ‖

κ← ∂xxΦ ∂yΦ
2 − 2 ∂xΦ ∂yΦ ∂xyΦ+ ∂yyΦ ∂xΦ

2

‖∇Φ‖3
3 Integrate the momentum equation

uuu∗n ← uuun

uuu∗
n+1 ← uuu∗

n +

ˆ
ht

∂uuu∗

∂t
dt

4 Correct pressure and velocity fields

Find δP such that : ∇·
(∇(δP)

ρ

)
=
∇·uuu∗n+1

ht
Pn+1 ← Pn + δP

uuun+1 ← uuu∗
n+1 − ht

ρ
∇∇∇(δP)

5 Update level set function

Φn+1 ← Φn −
ˆ
ht

(uuu · ∇∇∇)Φ dt

6 Reinitialize level set function on a regular basis
If isTimeToReinitialize :
Φ← lvlSetReinit(Φ)

196 Appendix C. Algorithms

C.3 Vortex Particle-Mesh

Algorithm 13: Main structure of VPM solver
Note : the ω2u() function transforms vorticity ω into velocity uuu following the procedure
described in (Algo. 14-2)

1 Integrate vorticity and particles’ position{
ωn+1
p

XXXn+1
p

}
←
{
ωn
p

XXXnp

}
+

ˆ
ht

∂ωp

∂t

({
XXXp
ωp

}
, t,Φn

p,uuu
n
,old

)
dt

2 Save velocity for next time step
uuun ← ω2u(ωn)

uuun+1
,old ← uuun

3 Apply no-slip BC to vorticity field
ωn+1

p ← applyNoSlipBC(ωn+1
p)

4 Remesh particles regularly
Every nrmsh time steps :

XXXn+1
p ,

{
ωn+1
p

Φn+1
p

}
← remesh

(
XXXn+1
p ,

{
ωn+1
p

Φn+1
p

})

5 Reinitialize level set field regularly
If isTimeToReinitialize :

Φn+1 ← P2M
(
XXXp,Φ

n+1
p

)

Φn+1 ← lvlSetReinit(Φn+1)

Φn+1
p ← M2P

(
XXXp,Φ

n+1
)

C.3. Vortex Particle-Mesh 197

Algorithm 14: Algorithm to evaluate the time derivative of vorticity ∂ωp

∂t

1 Interpolate vorticity and level set on grid{
ω
Φ

}
← P2M

(
XXXp,

{
ωp

Φp

})

2 Transform vorticity into velocity
Find ψ such that : ∇2ψ = −ω
uuu ←∇∇∇× (ψ ê̂êez)

3 Compute fluid’s properties
ρ,ε ← (1− Hε(Φ)) ρint + Hε(Φ) ρext
µ,ε ← (1− Hε(Φ))µint + Hε(Φ)µext

4 Evaluate time derivative of velocity
Duuup

Dt
← uuup − uuup,old

ht

5 Compute ∂tω using momentum equation on vorticity

∂tω ← −
(
ggg − Duuu

Dt

)
× ∇ρε

ρε
+

1

ρε
∇∇∇×

[
∇∇∇ ·

[
µε
(
∇uuu +∇uuuT

)]]

− σ

ρ,ε
δε∇× (κ(Φ)nnn)

6 Interpolate ∂tω and velocity from grid to particles{
∂tωp

uuup

}
← M2P

(
XXXp,

{
∂tω
uuu

})

7 return
{
∂tωp

uuup

}

198 Appendix C. Algorithms

Appendix D

Time-integrators

This appendix presents four time integrators. For each is specified the algo-
rithm used in the calculations, its Butcher table as well as its sequence of error
in material acceleration (Dtv

′ n)n∈N.

As a reminder, the sequences (Dtv
′ n)n∈N are helpful to determine the sta-

bility properties of the time integrator relaxtive to the buoyancy instability
studied in chapter 5 Those sequences are presented in the under-relaxed case
where Dtv

′ ∗,n−1 corresponds to the previously calculated under-relaxed value
(see section 5.4.2). For the non-relaxed case, set the relaxation factor α to one.
The recursion rules are expressed in terms of operator I (·) which is defined
as

I (Dtv
′) := − S

(
Dtv

′ ∂ ln(x)

∂x

)
(D.1)

D.1 Euler-Explicit

Algorithm 15: Euler explicit time inte-
grator

qn+1 ← q0 + ht f(tn, qn)

0
1

Dtv
′ n+1 = −I

(
αDtv

′ n + (1− α)Dtv
′ ∗,n−1

)
(D.2)

199

200 Appendix D. Time-integrators

D.2 RK2 Midpoint

Algorithm 16: RK2 midpoint time in-
tegrator

1 q(1) ← qn + ht
2
Rhs(qn, tn)

2 qn+1 ← qn + ht Rhs(q(1), tn + ht
2

)

0
1/2 1/2

0 1

Dtv
′ n+1 =−I

(
2

3
αDtv

′ n + (1− α)Dtv
∗,n−1

)

+ αI 2

(
1

3
αDtv

′ n +
1

3
(1− α)Dtv

′ ∗,n−1

) (D.3)

D.3 Another RK2 time-integrator

Algorithm 17: Another RK2 time inte-
grator

1 q(1) ← qn + ht Rhs(qn, tn)

2 qn+1 ← qn + ht
(
1
2
Rhs(qn, tn) + 1

2
Rhs

(
q(1), tn + ht

))

0
1 1

1/2 1/2

Dtv
′ n+1 =−I

(
3

4
αDtv

′ n + (1− α)Dtv
′ ∗,n−1

)

+ αI 2

(
1

4
αDtv

′ n +
1

4
(1− α)Dtv

′ ∗,n−1

) (D.4)

D.4. A low storage RK3 time-integrator 201

D.4 A low storage RK3 time-integrator

Algorithm 18: A low-storage RK3
time-integrator

1 Rhs(1) ← Rhs(tn, qn)

q(1) ← qn + 1
3
ht Rhs

(1)

2 Rhs(2) ← − 5
9
Rhs(1) + Rhs(tn + 1

4
ht, q

(1))

q(2) ← q(1) + 15
16
ht Rhs

(2)

3 Rhs(3) ← − 153
128

Rhs(2) + Rhs(tn + 3
4
ht, q

(2))

qn+1 ← q(2) + 8
15
ht Rhs

(3)

0
1/3 1/3
3/4 −3/16 15/16

1/6 3/10 8/15

Dtv
n+1 = − I

(
39

56
αDtv

′ n + (1− α)Dtv
′ ∗,n−1

)

+ αI 2

(
13

56
αDtv

′ n +
17

56
(1− α)Dtv

′ ∗,n−1

)

− α2 I 3

(
1

14
αDtv

′ n +
1

14
(1− α)Dtv

′ ∗,n−1

)
(D.5)

202 Appendix D. Time-integrators

Appendix E

Fluid properties

Sodium values have been taken from [233]. Lead, Bismuth and LBE values
have been taken from [234]. Mass density and specific heat capacity of Argon
has been taken from [235], its dynamic viscosity from [236] and its thermal
conductivity from [237]. Accuracy of Argon dynamic viscosity and thermal
conductivity has been taken from [238]. Sodium specific heat capacity has
been interpolated from values of [233], while mass density and specific heat
capacity of argon has been interpolated from values of [235]. Surface tensions
are only meaningful for liquids, not gases. From those sources, laws have either
been extracted (if existing in reference article) or created as an interpolation
from values given in those articles.

(Table E.1) references laws for mass density ρ, specific heat capacity cp,
thermal conductivity λ, dynamic viscosity µ and surface tension σ. On the
other hand, thermal diffusivity α is computed as

α =
λ

ρ cp
, (E.1)

viscous diffisuvity ν (i.e. kinematic diffusivity) is computed as

ν =
µ

ρ
, (E.2)

and Prandtl number as
Pr =

ν

α
. (E.3)

Values for those quantities are available in tables E.2 E.3 and E.4. The heat
capacities shown in those tables are taken at constant pressure.

203

204 Appendix E. Fluid properties

T
able

E
.1:

F
luid

property
equations

at
a
pressure

of
1hP

a.

F
luid

V
alidity

range
[K

]
A
ccuracy

E
quation

Source

M
ass

density
[k
g
.m
−
3
]

Sodium
3
7
1
<

T
<

1
4
0
0

0
.4
%

2
1
9
+

2
7
5
.3
2
(1−

T
2
5
0
3
.7
)
+

5
1
1
.5
8
(1−

T
2
5
0
3
.7
)
0
.5

[233]
L
ead

6
0
0
.6

<
T

<
2
0
1
6

0
.7
0
%

:
1
1
3
6
7−

1
.1
9
4
4
T

[234]
B
ism

uth
5
4
4
.4

<
T

<
1
3
0
0

0
.4
0
%

1
0
7
2
6−

1
.2
2
0
8
T

[234]
L
B
E

3
9
7
.7

<
T

<
1
3
0
0

0
.8
0
%

11096
-
1.3236

T
[234]

A
rgon

8
7
.1
7
8
<

T
<

1
2
0
0

1
%

5
0
7
.1

T
−
1
.0
0
8

Interpolated
from

[235]

Specific
heat

capacity
[J
.k
g −

1
.K
−
1
]

Sodium
3
7
1
<

T
<

1
6
0
0

1
%

4
.5
0
4
9
e −

4
T

2−
0
.8
4
8
2
8
4
T

+
1
6
4
6
.5
8

Interpolated
from

[233]
L
ead

6
0
0
.6

<
T

<
1
3
0
0

2
%

+
1
7
5
.1−

4
.9
6
1
e −

2
T

+
1
.9
8
5
e −

5
T

2−
2
.0
9
9
e −

9
T

3−
1
.5
2
4
e
6
T
−
2

[234]
B
ism

uth
5
4
4
.4

<
T

<
1
3
0
0

2
%

1
1
8
.2

+
5
.9
3
4
e −

3
T
−
3
+

7
1
.8
3
e
5
T
−
2

[234]
L
B
E

3
9
7
.7

<
T

<
1
2
0
0

1
0
%

1
5
9−

2
.7
2
e −

2
T

+
7
.1
2
e −

6
T

2
[234]

A
rgon

8
7
.1
7
8
<

T
<

1
2
0
0

4
%

5
2
0
.4

+
2
.0
8
6
e7

T
−
2
.9
4
0

Interpolated
from

[235]

T
herm

al
conductivity
[W

.m
−
1
.K
−
1
]

Sodium
3
7
1
<

T
<

1
5
0
0

1
5
%

1
2
4
.6
7−

0
.1
1
3
8
1
T

+
5
.5
2
2
6
e −

5
T

2−
1
.1
8
4
2
e −

8
T

3
[233]

L
ead

6
0
0
.6

<
T

<
1
3
0
0

3
%

9
.2

+
0
.0
1
1
T

[234]
B
ism

uth
5
4
4
.4

<
T

<
1
0
0
0

1
0
%

6
.5
5
+

1
e−

2
T

[234]
L
B
E

3
9
7
.7

<
T

<
1
1
0
0

1
0
%

3
.6
1
+

1
.5
1
7
e −

2
T

−
1
.7
4
1
e −

6
T

2
[234]

A
rgon

8
7
.1
7
8
<

T
<

2
0
0
0

2
%

−
3
.5
9
6
e −

1
5
T

4
+

2
.0
1
e −

1
1
T

3−
4
.4
6
3
e −

8
T

2
+

7
.2
0
3
e −

5
T

−
3
.1
6
2
e −

4
Interpolated

from
[237]

D
ynam

ic
viscosity
[P

a
.s]

Sodium
3
7
1
<

T
<

1
3
0
0

5
%

ex
p
(−

6
.4
4
0
6−

0
.3
9
5
8
ln
(T

)
+

5
5
6
.8
3
5

1T
)

[233]
L
ead

6
0
0
.6

<
T

<
1
4
7
0

1
0
%

4
.5
5
e−

4
ex

p (
1
0
6
9

T)
[234]

B
ism

uth
5
4
4
.4

<
T

<
1
3
0
0

1
0
%

4
.4
5
8
e −

4
ex

p (
7
7
5
.8

T)
[234]

L
B
E

3
9
7
.7

<
T

<
1
1
0
0

6
%

4
.9
4
e−

4
ex

p (
7
5
4
.1

T)
[234]

A
rgon

8
7
.1
7
8
<

T
<

2
0
0
0

1
%

2
.2
2
8
e −

5
ex

p (
0
.5
9
0
7
7
ln
(T

)−
9
2
.5
7
7

T
+

2
9
9
0
.4

T
2

−
3
.0
7
5
5)

[236]

Surface
tension
[N

.m
−
1
]

Sodium
3
7
1
<

T
<

1
6
0
0

1
1
%

2
4
0
.5 (

1−
TT
c)

1
.1
2
6

[233]
L
ead

6
0
0
.6

<
T

<
1
3
0
0

5
%

0
.5
1
9−

1
.1
3
e −

4
T

[234]
B
ism

uth
5
4
4
.4

<
T

<
1
3
0
0

4
%

0
.4
2
5
5−

8
.0
e −

5
T

[234]
L
B
E

3
9
7
.7

<
T

<
1
4
0
0

3
%

0
.4
3
7−

6
.6
e −

5
T

[234]

205

T
ab

le
E
.2
:
M
as
s
de
ns
it
y,

he
at

ca
pa

ci
ty

an
d
th
er
m
al

co
nd

uc
ti
vi
ty

va
lu
es

at
a

pr
es
su
re

of
1h

P
a.

E
m
pt
y
ce
lls

ar
e
ou

ts
id
e
th
e
va
lid

it
y
ra
ng

es
of

th
e
fo
rm

ul
as

(T
ab

le
E
.1
)

T
em

pe
ra
tu
re

[K
]

M
as
s
de
ns
it
y
[k
g
.m
−
3
]

Sp
ec
ifi
c
he
at

ca
pa

ci
ty

[J
.k
g
−
1
.K
−
1
]

T
he
rm

al
co
nd

uc
ti
vi
ty

[W
.m
−
1
.K
−
1
]

So
di
um

L
ea
d

B
is
m
ut
h

L
B
E

A
rg
on

So
di
um

L
ea
d

B
is
m
ut
h

L
B
E

A
rg
on

So
di
um

L
ea
d

B
is
m
ut
h

L
B
E

A
rg
on

40
0

91
9

-
-

10
56
7

1.
20
8
4

1
37
9.
34

-
-

14
9.
26

52
0.
87

87
.2
2

-
-

9.
40

0.
02
2
55

45
0

90
8

-
-

10
50
0

1.
07
3
1

1
35
6.
08

-
-

14
8.
20

52
0.
73

83
.5
6

-
-

10
.0
8

0.
02
4
74

50
0

89
7

-
-

10
43
4

0.
96
5
0

1
33
5.
06

-
-

14
7.
18

52
0.
64

80
.0
9

-
-

10
.7
6

0.
02
6
83

55
0

88
6

-
10

05
5

10
36
8

0.
87
6
6

1
31
6.
30

-
14
1.
95

14
6.
19

52
0.
58

76
.8
1

-
12
.0
5

11
.4
3

0.
02
8
81

60
0

87
4

-
9
99
4

10
30
2

0.
80
3
0

1
29
9.
79

-
13
8.
15

14
5.
24

52
0.
54

73
.7
1

-
12
.5
5

12
.0
9

0.
03
0
71

65
0

86
3

10
59
1

9
93
2

10
23
6

0.
74
0
8

1
28
5.
53

14
7.
06

13
5.
20

14
4.
33

52
0.
51

70
.7
7

16
.3
5

13
.0
5

12
.7
3

0.
03
2
53

70
0

85
2

10
53
1

9
87
1

10
16
9

0.
68
7
4

1
27
3.
52

14
6.
27

13
2.
86

14
3.
45

52
0.
49

68
.0
0

16
.9
0

13
.5
5

13
.3
8

0.
03
4
27

75
0

84
0

10
47
1

9
81
0

10
10
3

0.
64
1
3

1
26
3.
77

14
5.
46

13
0.
97

14
2.
61

52
0.
47

65
.3
8

17
.4
5

14
.0
5

14
.0
1

0.
03
5
94

80
0

82
8

10
41
1

9
74
9

10
03
7

0.
60
0
9

1
25
6.
27

14
4.
66

12
9.
42

14
1.
80

52
0.
46

62
.9
0

18
.0
0

14
.5
5

14
.6
3

0.
03
7
56

85
0

81
7

10
35
2

9
68
8

9
97
1

0.
56
5
2

1
25
1.
02

14
3.
87

12
8.
14

14
1.
02

52
0.
45

60
.5
6

18
.5
5

15
.0
5

15
.2
5

0.
03
9
13

90
0

80
5

10
29
2

9
62
7

9
90
5

0.
53
3
6

1
24
8.
02

14
3.
12

12
7.
07

14
0.
29

52
0.
44

58
.3
4

19
.1
0

15
.5
5

15
.8
5

0.
04
0
65

95
0

79
3

10
23
2

9
56
6

9
83
9

0.
50
5
3

1
24
7.
28

14
2.
40

12
6.
16

13
9.
59

52
0.
44

56
.2
4

19
.6
5

16
.0
5

16
.4
5

0.
04
2
14

1
00
0

78
1

10
17
3

9
50
5

9
77
2

0.
47
9
8

1
24
8.
79

14
1.
72

12
5.
38

13
8.
92

52
0.
43

54
.2
4

20
.2
0

16
.5
5

17
.0
4

0.
04
3
59

1
05
0

76
9

10
11
3

9
44
4

9
70
6

0.
45
6
8

1
25
2.
55

14
1.
08

12
4.
72

13
8.
29

52
0.
43

52
.3
5

20
.7
5

-
17
.6
2

0.
04
5
01

1
10
0

75
6

10
05
3

9
38
3

9
64
0

0.
43
5
9

1
25
8.
56

14
0.
49

12
4.
14

13
7.
70

52
0.
42

50
.5
4

21
.3
0

-
18
.1
9

0.
04
6
40

1
15
0

74
4

9
99
3

9
32
2

9
57
4

0.
41
6
8

1
26

6.
83

13
9.
96

12
3.
63

13
7.
14

52
0.
42

48
.8
1

21
.8
5

-
-

0.
04
7
78

1
20
0

73
2

9
93
4

9
26
1

9
50
8

0.
39
9
3

1
27

7.
34

13
9.
47

12
3.
19

13
6.
61

52
0.
42

47
.1
6

22
.4
0

-
-

0.
04
9
13

1
25
0

71
9

9
87
4

9
20
0

9
44
2

0.
38
3
2

1
29

0.
12

13
9.
03

12
2.
80

-
-

45
.5
7

22
.9
5

-
-

0.
05
0
47

1
30
0

70
6

9
81
4

9
13
9

9
37
5

0.
36
8
3

1
30

5.
14

13
8.
64

12
2.
45

-
-

44
.0
3

23
.5
0

-
-

0.
05
1
79

1
35
0

69
3

9
75
5

-
-

-
1
32
2.
41

-
-

-
-

42
.5
4

-
-

-
0.
05
3
10

1
40
0

68
0

9
69
5

-
-

-
1
34
1.
94

-
-

-
-

41
.0
8

-
-

-
0.
05
4
39

A
cc
ur
ac
y

0.
4%

0.
70
%

0.
40
%

0.
80
%

1%
1%

2%
2%

10
%

4%
15

%
3%

10
%

10
%

2%

206 Appendix E. Fluid properties

T
able

E
.3:

D
ynam

ic
viscosity

and
surface

tension
values

at
a
pressure

of1hP
a.

E
m
pty

cells
are

outside
the

validity
ranges

of
the

form
ulas

(T
ableE

.1)

T
em

perature
[K

]
D
ynam

ic
viscosity

[P
a
.s]

Surface
tension

[N
/
m
]

Sodium
L
ead

B
ism

uth
L
B
E

A
rgon

Sodium
L
ead

B
ism

uth
L
B
E

400
5.992·10 −

04
-

-
3.254·10 −

03
2.865·10 −

05
1.977·10

+
02

-
-

4.106·10 −
01

450
4.899·10 −

04
-

-
2.639·10 −

03
3.139·10 −

05
1.924·10

+
02

-
-

4.073·10 −
01

500
4.152·10 −

04
-

-
2.232·10 −

03
3.400·10 −

05
1.871·10

+
02

-
-

4.040·10 −
01

550
3.614·10 −

04
-

1.827·10 −
03

1.946·10 −
03

3.651·10 −
05

1.819·10
+

02
-

4.255·10 −
01

4.007·10 −
01

600
3.209·10 −

04
-

1.624·10 −
03

1.736·10 −
03

3.891·10 −
05

1.767·10
+

02
-

4.255·10 −
01

3.974·10 −
01

650
2.895·10 −

04
2.356·10 −

03
1.471·10 −

03
1.576·10 −

03
4.123·10 −

05
1.714·10

+
02

4.456·10 −
01

4.255·10 −
01

3.941·10 −
01

700
2.644·10 −

04
2.095·10 −

03
1.350·10 −

03
1.451·10 −

03
4.348·10 −

05
1.662·10

+
02

4.399·10 −
01

4.255·10 −
01

3.908·10 −
01

750
2.440·10 −

04
1.892·10 −

03
1.254·10 −

03
1.350·10 −

03
4.565·10 −

05
1.611·10

+
02

4.343·10 −
01

4.255·10 −
01

3.875·10 −
01

800
2.271·10 −

04
1.731·10 −

03
1.176·10 −

03
1.268·10 −

03
4.776·10 −

05
1.559·10

+
02

4.286·10 −
01

4.255·10 −
01

3.842·10 −
01

850
2.128·10 −

04
1.600·10 −

03
1.111·10 −

03
1.200·10 −

03
4.981·10 −

05
1.508·10

+
02

4.230·10 −
01

4.255·10 −
01

3.809·10 −
01

900
2.006·10 −

04
1.492·10 −

03
1.056·10 −

03
1.142·10 −

03
5.181·10 −

05
1.456·10

+
02

4.173·10 −
01

4.255·10 −
01

3.776·10 −
01

950
1.900·10 −

04
1.402·10 −

03
1.009·10 −

03
1.093·10 −

03
5.377·10 −

05
1.405·10

+
02

4.117·10 −
01

4.255·10 −
01

3.743·10 −
01

1
000

1.808·10 −
04

1.325·10 −
03

9.684·10 −
04

1.050·10 −
03

5.567·10 −
05

1.355·10
+

02
4.060·10 −

01
4.255·10 −

01
3.710·10 −

01

1
050

1.727·10 −
04

1.259·10 −
03

9.333·10 −
04

1.013·10 −
03

5.754·10 −
05

1.304·10
+

02
4.004·10 −

01
4.255·10 −

01
3.677·10 −

01

1
100

1.656·10 −
04

1.202·10 −
03

9.025·10 −
04

9.805·10 −
04

5.936·10 −
05

1.254·10
+

02
3.947·10 −

01
4.255·10 −

01
3.644·10 −

01

1
150

1.591·10 −
04

1.153·10 −
03

8.752·10 −
04

-
6.115·10 −

05
1.203·10

+
02

3.891·10 −
01

4.255·10 −
01

3.611·10 −
01

1
200

1.533·10 −
04

1.109·10 −
03

8.510·10 −
04

-
6.291·10 −

05
1.153·10

+
02

3.834·10 −
01

4.255·10 −
01

3.578·10 −
01

1
250

1.481·10 −
04

1.070·10 −
03

8.292·10 −
04

-
6.464·10 −

05
1.104·10

+
02

3.778·10 −
01

4.255·10 −
01

3.545·10 −
01

1
300

1.434·10 −
04

1.035·10 −
03

8.097·10 −
04

-
6.633·10 −

05
1.054·10

+
02

3.721·10 −
01

4.255·10 −
01

3.512·10 −
01

1
350

-
1.004·10 −

03
-

-
6.800·10 −

05
1.005·10

+
02

-
-

3.479·10 −
01

1
400

-
9.764·10 −

04
-

-
6.963·10 −

05
9.562·10

+
01

-
-

3.446·10 −
01

A
ccuracy

5%
10%

10%
6%

1%
11%

5%
4%

3%

207

T
ab

le
E
.4
:
F
lu
id

pr
op

er
ty

va
lu
es

at
a
pr
es
su
re

of
1h

P
a.

E
m
pt
y
ce
lls

ar
e
ou

ts
id
e

th
e
va
lid

it
y
ra
ng

es
of

th
e
fo
rm

ul
as

(T
ab

le
E
.1
)

T
em

p.
[K

]
T
he

rm
al

di
ff
us
iv
it
y

[m
2
.s
−

1
]

V
is
co
us

di
ff
us
iv
it
y

[m
2
.s
−

1
]

P
ra
nd

tl
nu

m
b
er

So
di
um

L
ea
d

B
is
m
ut
h

L
B
E

A
rg
on

So
di
um

L
ea
d

B
is
m
ut
h

L
B
E

A
rg
on

So
di
um

L
ea
d

B
is
m
ut
h

L
B
E

A
rg
on

40
0

6.
88
·1

0−
5

-
-

5.
96
·1

0−
6
3.
58
·1

0−
5

6.
52
·1

0−
7

-
-

3.
08
·1

0−
7
2.
38
·1

0−
5

0.
00

95
-

-
0.
05

17
0.
66

70
45

0
6.
79
·1

0−
5

-
-

6.
48
·1

0−
6
4.
43
·1

0−
5

5.
40
·1

0−
7

-
-

2.
51
·1

0−
7
2.
94
·1

0−
5

0.
00

80
-

-
0.
03

88
0.
66

69
50

0
6.
69
·1

0−
5

-
-

7.
00
·1

0−
6
5.
34
·1

0−
5

4.
63
·1

0−
7

-
-

2.
14
·1

0−
7
3.
54
·1

0−
5

0.
00

69
-

-
0.
03

05
0.
66

68
55

0
6.
59
·1

0−
5

-
8.
44
·1

0−
6
7.
54
·1

0−
6
6.
31
·1

0−
5

4.
08
·1

0−
7

-
1.
82
·1

0−
7
1.
88
·1

0−
7
4.
18
·1

0−
5

0.
00

62
-

0.
02

15
0.
02

49
0.
66

67
60

0
6.
49
·1

0−
5

-
9.
09
·1

0−
6
8.
08
·1

0−
6
7.
35
·1

0−
5

3.
67
·1

0−
7

-
1.
63
·1

0−
7
1.
69
·1

0−
7
4.
86
·1

0−
5

0.
00

57
-

0.
01

79
0.
02

09
0.
66

67
65

0
6.
38
·1

0−
5
1.
05
·1

0−
5
9.
72
·1

0−
6
8.
62
·1

0−
6
8.
44
·1

0−
5

3.
35
·1

0−
7
2.
23
·1

0−
7
1.
48
·1

0−
7
1.
54
·1

0−
7
5.
58
·1

0−
5

0.
00

53
0.
02

12
0.
01

52
0.
01

79
0.
66

67
70

0
6.
27
·1

0−
5
1.
10
·1

0−
5
1.
03
·1

0−
5
9.
17
·1

0−
6
9.
58
·1

0−
5

3.
11
·1

0−
7
1.
99
·1

0−
7
1.
37
·1

0−
7
1.
43
·1

0−
7
6.
34
·1

0−
5

0.
00

50
0.
01

81
0.
01

32
0.
01

56
0.
66

67
75

0
6.
16
·1

0−
5
1.
15
·1

0−
5
1.
09
·1

0−
5
9.
72
·1

0−
6
1.
08
·1

0−
4

2.
91
·1

0−
7
1.
81
·1

0−
7
1.
28
·1

0−
7
1.
34
·1

0−
7

-
0.
00

47
0.
01

58
0.
01

17
0.
01

37
-

80
0

6.
05
·1

0−
5
1.
20
·1

0−
5
1.
15
·1

0−
5
1.
03
·1

0−
5
1.
20
·1

0−
4

2.
74
·1

0−
7
1.
66
·1

0−
7
1.
21
·1

0−
7
1.
26
·1

0−
7

-
0.
00

45
0.
01

39
0.
01

05
0.
01

23
-

85
0

5.
93
·1

0−
5
1.
25
·1

0−
5
1.
21
·1

0−
5
1.
08
·1

0−
5
1.
33
·1

0−
4

2.
61
·1

0−
7
1.
55
·1

0−
7
1.
15
·1

0−
7
1.
20
·1

0−
7

-
0.
00

44
0.
01

24
0.
00

95
0.
01

11
-

90
0

5.
81
·1

0−
5
1.
30
·1

0−
5
1.
27
·1

0−
5
1.
14
·1

0−
5
1.
46
·1

0−
4

2.
49
·1

0−
7
1.
45
·1

0−
7
1.
10
·1

0−
7
1.
15
·1

0−
7

-
0.
00

43
0.
01

12
0.
00

86
0.
01

01
-

95
0

5.
69
·1

0−
5
1.
35
·1

0−
5
1.
33
·1

0−
5
1.
20
·1

0−
5
1.
60
·1

0−
4

2.
40
·1

0−
7
1.
37
·1

0−
7
1.
06
·1

0−
7
1.
11
·1

0−
7

-
0.
00

42
0.
01

02
0.
00

79
0.
00

93
-

1
00

0
5.
56
·1

0−
5
1.
40
·1

0−
5
1.
39
·1

0−
5
1.
26
·1

0−
5
1.
75
·1

0−
4

2.
32
·1

0−
7
1.
30
·1

0−
7
1.
02
·1

0−
7
1.
08
·1

0−
7

-
0.
00

42
0.
00

93
0.
00

73
0.
00

86
-

1
05

0
5.
44
·1

0−
5
1.
45
·1

0−
5

-
1.
31
·1

0−
5
1.
89
·1

0−
4

2.
25
·1

0−
7
1.
25
·1

0−
7
9.
88
·1

0−
8
1.
04
·1

0−
7

-
0.
00

41
0.
00

86
-

0.
00

80
-

1
10

0
5.
31
·1

0−
5
1.
51
·1

0−
5

-
1.
37
·1

0−
5
2.
05
·1

0−
4

2.
19
·1

0−
7
1.
20
·1

0−
7
9.
62
·1

0−
8
1.
02
·1

0−
7

-
0.
00

41
0.
00

79
-

0.
00

74
-

1
15

0
5.
18
·1

0−
5
1.
56
·1

0−
5

-
-

2.
20
·1

0−
4

2.
14
·1

0−
7
1.
15
·1

0−
7
9.
39
·1

0−
8

-
-

0.
00

41
0.
00

74
-

-
-

1
20

0
5.
05
·1

0−
5
1.
62
·1

0−
5

-
-

2.
36
·1

0−
4

2.
10
·1

0−
7
1.
12
·1

0−
7
9.
19
·1

0−
8

-
-

0.
00

42
0.
00

69
-

-
-

1
25

0
4.
91
·1

0−
5
1.
67
·1

0−
5

-
-

-
2.
06
·1

0−
7
1.
08
·1

0−
7
9.
01
·1

0−
8

-
-

0.
00

42
0.
00

65
-

-
-

1
30

0
4.
78
·1

0−
5
1.
73
·1

0−
5

-
-

-
2.
03
·1

0−
7
1.
06
·1

0−
7
8.
86
·1

0−
8

-
-

0.
00

42
0.
00

61
-

-
-

1
35

0
4.
64
·1

0−
5

-
-

-
-

-
1.
03
·1

0−
7

-
-

-
-

-
-

-
-

1
40

0
4.
50
·1

0−
5

-
-

-
-

-
1.
01
·1

0−
7

-
-

-
-

-
-

-
-

208 Appendix E. Fluid properties

Appendix F

Proofs and justification

This chapter gathers proofs and arguments for several assertions encountered
in different parts of the thesis.

F.1 Single-fluid VPM method

F.1.1 Procedure to obtain velocity from vorticity (Eq. 2.3)

A Helmholtz decomposition is performed on velocity so as to split it into an
curl-free ∇φ and a divergence-free ∇×AAA components

uuu = ∇×AAA + ∇φ (F.1)

where φ is the velocity potential and AAA reduces to the stream function ψ ê̂êez
in 2D. This decomposition is not unique in AAA and we use the gauge condition
∇·AAA = 0 to enforce unicity.

Since the flow is incompressible the velocity field is solenoïdal ∇·uuu = 0 we
have ∇2φ = 0. Moreover since the flow domain is enclosed in a box we have a
no through flow boundary condition that transaltes to ∇φ = 0 on the domain
boundary ∂Ω. This implies φ = cte in the whole domain Ω, hence the curl-free
component of velocity is zero ∇φ = 0 which yields

uuu = ∇×AAA (F.2)

Noting that the curl of velocity is vorticity by definition, one has

ω = ∇×∇×AAA = −∇2AAA = −∇2(ψ ê̂êez) (F.3)

given the gauge condition ∇·AAA = 0. Moreover for flows within a closed box,
the stream function is constant on the boundary and hence chosen to be zero
on ∂Ω. Eventually velocity can be retrieved from the stream function through

uuu = ∇×ψ ê̂êez (F.4)

209

210 Appendix F. Proofs and justification

F.2 Interface capturing VPM method

F.2.1 Equivalence between Rouy scheme and upwinding
Figure F.1 shows the different cases that can be encountered when reinitialis-
ing. The purpose of Rouy’s and Tourin’s scheme is to select the downwinding
scheme for each of those cases such as to preserve the stability of the method.
Additionaly it erases local minimas. The first line (figures (a) to (e)) corre-
sponds to reinitialisation inside the exterior region Ω+ which is the region of
the domain Ω where the level set field is positive. On the other hand, the
bottom line (figures (f) to (j)) corresponds to the interrior region Ω− where the
level set field is negative.

The equivalence will be shown in the exterior region case only (Eq. 3.19a)
for a one-dimensional problem. A similar reasoning will lead to a corresponding
result in the interior region Ω−. Moreover, the original first order decentered
schemes will be considered, as in Rouy’s and Tourin’s study [173]

D−x φ =
φi,j − φi−1,j

hx
(F.5a)

D+
x φ =

φi+1,j − φi,j
hx

(F.5b)

Three differents types of cases can be seen: (i) monotone level set fields
i.e. level set fields increasing away from the interface (ii) the vincinity of local
maximas where the two first order schemes D−x φ and D+

x φ evaluate a slope of
opposite sign, and (iii) the cup situation.

The Rouy scheme consists in using the downwinding scheme in all cases
except the cup case where all values are increased at a rate ∂φreinit

∂τ of one.

Downwinding for the reinitialisation equation

Considering an one-dimensional advection equation on level set φ

∂φ

∂t
+ c

∂φ

∂x
= Rhs(φ, t) (F.6)

where c is the celerity, a traditional downwinding works as

Dxφ =

{
D−x φ if c > 0

D+
x φ if c < 0

(F.7)

In the case of the level set reinitialisation equation, the celerity is given by the
x-component of the normal vector n̂̂n̂n · ê̂êex which is computed as

n̂̂n̂n =
∇φ
‖∇φ‖ (F.8)

using 2nd order centered finite differences. Hence

c =
φi+1 − φi−1

‖φi+1 − φi−1‖
(F.9)

F.2. Interface capturing VPM method 211

(a) φ > 0,
slope A

(b) φ > 0,
slope B

(c) φ > 0, sum-
mit A

(d) φ > 0, sum-
mit B

(e) φ > 0, cup

(f) φ < 0,
slope A

(g) φ < 0,
slope B

(h) φ < 0, sum-
mit A

(i) φ < 0, sum-
mit B

(j) φ < 0, cup

Figure F.1: Upwinding/downwinding rules enforced by (Eq. 3.19a) (Eq. 3.19b)
in a one-dimensional case. () is an interface point xxxΓ, () is the level
set profile φ. Additionally, () is a point of the grid where the value of the
level set field is known, () are two stencils of first order decentered (one
downwind and one upwind) schemes for ∂φ

∂x . () (resp. ()) indicates
that the downwind (resp. upwind) stencil is used, while () denotes that
the advective term is set to zero.

Moreover the 2nd order finite difference can be expressed as the average of both
first order schemes

φi+1 − φi−1

2hx
=

1

2

(
D−x φ+D+

x φ
)

(F.10)

This yields

c =

{
+1 if D−x φ + D+

x φ > 0

−1 if D−x φ + D+
x φ < 0

(F.11)

The generic downwinding scheme specified in equation F.7 can hence be ex-
pressed as

Dxφ =

{
D−x φ if D−x φ + D+

x φ > 0

D+
x φ if D−x φ + D+

x φ < 0
(F.12)

or more elegantly
|Dxφ| =

∣∣max(D−x φ,−D+
x φ)

∣∣ (F.13)

in the case of a level set reinitialisation equation.

General expression

The Rouy scheme performs downwinding in cases (a) to (d) which translates as
equation F.13. Additionally in the case of a cup (Fig. F.1f), the time derivative
∂φ
∂τ is set to one such that the cup will eventually vanish. The cup case is

212 Appendix F. Proofs and justification

caracterised by D−x φ < 0 and D+
x φ > 0, and in such a situation the scheme

must set ‖Dxφ‖ to zero. To summarise one has
{
|Dxφ| = 0 if D−x φ < 0 and D+

x φ > 0

|Dxφ| = |max(D−x φ,−D+
x φ)| otherwise

(F.14)

This can be expressed as

|Dxφ| =
∣∣max(0, D−x φ,−D+

x φ)
∣∣ (F.15)

which is nothing less than the Rouy scheme for the exterior region Ω+.

F.2.2 Level set flip-flop
Consider an interface Γk such its points (x, y) observe

y = cos(k x) (F.16)

At each summit node xi defined as

xi = i
π

k
, ∀i ∈ N (F.17)

we have a symmetry

y(xi − x) = y(xi + x) , ∀x ∈ R ∀i ∈ N (F.18)

and hence the surface tension term generates a symmetrical vertical acceleration

a(xi − x) = a(xi + x) , ∀x ∈ R ∀i ∈ N. (F.19)

Hence vorticity at those nodes is equal to

ω(xxxi) =
∂v

∂x
− ∂u

∂y
= 0. (F.20)

In the case of the flip-flop mode, the wave number k is such that all grid nodes
correspond to xi points. In other words the vorticity is exactly zero at all grid
nodes.

F.3 Viscous term

F.3.1 Correct expansion of viscous term (Eq. 4.37)
Thirifay’s demonstration [115] assumes that for any vector uuu and scalar λ one
has

∇2uuu×∇λ = ∇2uuu×∇λ + uuu×∇2∇λ (F.21)

which is incorrect.
Instead one has for any two vectors uuu and vvv

∇2uuu× vvv = ∇2uuu× vvv + uuu×∇2vvv + 2

3∑

i=1

εipq
∂up
∂xi

∂vq
∂xi

(F.22)

F.4. High mass-density ratio VPM method 213

where εipq is the Levi-Civita symbol. Hence the actual general result for a
compressible flow is then

∇×∇·τττ = µ∇2ωωω + 2∇µ× (∇θ −∇×ωωω)

+ ∇ (ωωω · ∇µ) − ωωω∇2µ − 2

3∑

i=1

εipq
∂up
∂xi

∂(∇µ)q
∂xi

(F.23)

where θ is the dilatation and is defined as θ := ∇·uuu.
Omitting the trailing term alters significantly the simulations’ outputs. To

demonstrate this assertion, the rising bubble benchmark (see section 6.9) is run
with the correct and the incorrect forms of the equation (Fig. 6.10).

F.4 High mass-density ratio VPM method

F.4.1 Material acceleration sequence for any time inte-
grator (Eq. 5.32)

Given any equation

∂v′

∂t
= Rhs(v′, t) ∀t ∈]tn, tn+1[(F.24)

where Rhs(·) is defined as

Rhs(v, t) := I (Dtv
′) (F.25)

one has

Rhsk = I

(
v′ n + ht

∑k−1
k′=1 akk′Rhsk′

)
− v′ n−1

(tn + ck ht)− tn−1

=
1

1 + ck
I (Dtv

′ n) +
1

1 + ck

k−1∑

k′=1

akk′I (Rhsk′)

Thus, by recursion

Rhsk1 =
1

1 + ck1

I (Dtv
′ n) +

1

1 + ck1

k1−1∑

k2=1

ak1k2

1 + ck2

I 2 (Dtv
′ n)

+
1

1 + ck1

k1−1∑

k2=1

ak1k2

1 + ck2

k−1∑

k3=1

ak2k3

1 + ck3

I 3 (Dtv
′ n) + [...]

214 Appendix F. Proofs and justification

Hence

Dtv
′n+1 =

v′ n+1 − v′ n
tn+1 − tn =

m∑

k1=1

bk1
Rhsk1

=

m∑

k1=1

bk1

1 + ck1

I (Dtv
′ n) +

m∑

k1=1

bk1

1 + ck1

k1−1∑

k2=1

ak1k2

1 + ck2

I 2 (Dtv
′ n)

+

m∑

k1=1

bk1

1 + ck1

k1−1∑

k2=1

ak1k2

1 + ck2

k2−1∑

k3=1

ak2k3

1 + ck3

I 3 (Dtv
′ n) + [...]

=

m∑

k1=1

bk1

1 + ck1

I (Dtv
′ n) +

m∑

k1=1

k1−1∑

k2=1

bk1
ak1k2

(1 + ck1
)(1 + ck2

)
I 2 (Dtv

′ n)

+

m∑

k1=1

k1−1∑

k2=1

k2−1∑

k3=1

bk1
ak1k2

ak2k3

(1 + ck1
)(1 + ck2

)(1 + ck3
)

I 3 (Dtv
′ n) + [...]

F.5 Numerics and solver validation

F.5.1 Volume calculation using mollifier
ˆ
V

=
1

dim(Ω)

dim(Ω)∑

i=1

(ˆ
V

1

)
=

1

dim(Ω)

ˆ
V

∇ · xxx

=
1

dim(Ω)

ˆ
∂V

xxx · n̂̂n̂n ' 1

dim(Ω)

ˆ
Ω

δε xxx · n̂̂n̂n
(F.26)

Appendix G

Viscous term in vorticity
equation

The present appendix presents and derivates different ways to express the vis-
cous term of the vorticity equation. Framed equations corresponds to an ex-
pression of the viscous term that can be implemented directly in the solver.

Firstly, let us recall that the vorticity equation is

Dωωω

Dt
= − ∇p

ρ
× ∇ρ

ρ
+ ∇×

(
1

ρ
∇·τττ

)
(G.1)

It becomes
Dωωω

Dt
=

(
Duuu

Dt
− ggg
)
× ∇ρ

ρ
+

1

ρ
∇×

(
∇·τττ

)
(G.2)

after injection of the momentum equation in the pressure term. Note that the
1
ρ ratio is now outside of the curl operator

τττ = 2µSSS +

(
µv −

2

3
µ

)
θ III (G.3)

with SSS the strain tensor

SSS =
1

2

(
∇uuu+ (∇uuu)T

)
(G.4)

and θ the compression rate
θ = ∇·uuu (G.5)

Taking the divergence of the stress tensor yields

∇·τττ = − µ∇×ωωω +

(
µv +

4

3
µ

)
∇θ + 2SSS · (∇µ) + ∇µv −

2

3
µ (G.6)

and taking its curl results in

∇× (∇·τττ) = µ∇2ωωω + (∇µ)×
(
∇2uuu+∇θ

)
+ ∇×

(
2SSS · (∇µ)

)
(G.7)

215

216 Appendix G. Viscous term in vorticity equation

or, using ∇×ωωω = −∇2uuu + ∇θ

∇× (∇·τττ) = µ∇2ωωω + (∇µ)× (2∇θ − ∇×ωωω) + ∇×
(
2SSS · (∇µ)

)

(G.8)
The latter equation corresponds to equation C.19 in Thirifay’s thesis [115].

Additionnally, the ∇×
(
2SSS · (∇µ)

)
term can be expanded

2SSS · (∇µ) = ∇
(
uuu · (∇µ) + ∇×

(
uuu× (∇µ)

))
− (∇2µ)uuu + θ (∇µ) (G.9)

which yields1

∇×
(
2SSS · (∇µ)

)
= ∇×

(
∇× (uuu× (∇µ))

)
− ∇×

(
(∇2µ)uuu

)
+ ∇×

(
θ (∇µ)

)

(G.10)
Additionnally, since

∇×
(
θ∇µ

)
= ∇θ ×∇µ (G.11)

one has

∇×
(
2SSS · (∇µ)

)
= ∇×

(
∇× (uuu×(∇µ))

)
− ∇×

(
(∇µ)uuu

)
+ ∇θ×∇µ (G.12)

which results in

∇× (∇·τττ) = µ∇2ωωω + (∇µ)× (∇2uuu)

+ ∇×
(
∇× (uuu× (∇µ))

)
− ∇×

(
(∇µ)uuu

) (G.13)

This expression can be further expanded as well

∇×
(
∇×

(
uuu× (∇µ)

))
= −∇2uuu× (∇µ) + ∇

(
ωωω · (∇µ)

)
(G.14)

and

∇×
(

(∇2µ)uuu
)

=
(
∇
(
∇2µ

))
× uuu + (∇2µ)ωωω (G.15a)

=
(
∇2
(
∇µ
))
× uuu + (∇2µ)ωωω (G.15b)

and yields

∇× (∇·τττ) = µ∇2ωωω + (∇µ)× (∇2uuu)

+
(
−∇2uuu× (∇µ) + ∇

(
ωωω · (∇µ)

))

+
((
∇
(
∇2µ

))
× uuu + (∇2µ)ωωω

)
(G.16)

Also, Equation G.13 can be expanded in a different way

∇×
(

(∇µ×uuu)
)

=
(
∇(∇µ)

)
·uuu − (∇uuu) · (∇µ) + θ (∇µ) − (∇2µ)uuu (G.17)

1Same as equation C.21 in Thirifay’s thesis [115].

217

which yields

∇× (∇·τττ) = µ∇2ωωω + (∇µ)× (∇2uuu)

+ ∇×
(

(∇uuu · (∇µ − (∇(∇µ)) · uuu − θ (∇µ))
) (G.18)

	Introduction
	Context
	Motivation for the present study
	Lagrangian Vortex methods
	Eulerian, Lagrangian and Eulerian-Lagr. methods

	Minor fix: errors of VPM
	Vortex methods and velocity-pressure formulation
	A first general choice: Lagrangian vortex methods
	Vortex Particle-Mesh methods
	Particle-particle and particle-mesh methods
	Classification by discretization
	Extensibility to 3D

	Modern references for 3D VPM
	Arguments in favor of the VPM method
	Modern and/or relevant VPM methods
	Research questions

	Research questions
	Single-fluid VPM method
	Governing equations
	Some important conventions and definitions
	Systems of coordinates

	Lagrangian property of VPM methods
	Frames of reference
	Discretization of space
	Numerical method
	Discretization of space

	Particle slinging and time integrator
	General algorithm of the VPM method
	Interpolating between particles and grid
	Enforcing boundary conditions
	Free-slip boundary conditions
	No-slip boundary conditions

	Summary

	Interface capturing VPM method
	Selecting an interface capturing method
	Front tracking
	Particle methods
	Level set
	Volume of fluid
	Hybrid methods
	Recent evolutions
	Chosen method

	Level set method
	Updating the level set field to follow the interface
	Boundary conditions for level set

	Boundary condition on level set field and contact angle
	Boundary condition on level set field and contact angle
	Non-smoothness of level set field

	Level set shocks: better explain what we are looking at and why it's important
	Level set reinitialization
	Local level set method
	Strategies to trigger level set reinitialization

	Magic values in : how were they chosen?
	Move to chap6: choice of level set reinitialisation strategy
	Particle-based level set

	Computing the phase- and interface-dependent terms
	Surface tension term

	Move to chap6: formulation of surface tension term
	Level set ``Flip-flop'' mode

	Move to chap6: trenches caused by 2D filtering
	Move to chap6: Choice of tangential filter for level set field
	Computation of curvature
	Viscous term
	Single-fluid model

	Be more kind to Thirifay
	High mass-density ratio VPM method
	Introduction
	Interface modelling methods
	Smeared interface vortex methods
	Buoyancy numerical instability

	One-dimensional model of the instability
	General view on the problem
	Simplified governing equations
	Simplified geometry
	Non-dimensionalization of problem
	Discretization of the material derivative
	Governing equation on errors
	General sequence describing the instability
	Results with 1D model

	Comparison of 1D model against 2D simulations
	Comparison of material acceleration Dt v profiles
	Comparison of convergence rates of error norm E
	Comparison of critical mass density ratio +/- values
	Summary

	Achieving stability through under-relaxation
	Ideal under-relaxation

	Move to chap6: influence of under-relaxation on results
	Alternative to ideal under-relaxation
	Results of under-relaxation
	Comparison of 1D model against 2D VPM solver
	Harmonic analysis of the instability
	Practical view on the buoyancy numerical instability
	Influence of the under-relaxation factor
	Influence of the time integrator
	Influence of the mass density profile
	Measuring the ``unstableness'' of a method

	Summary

	Numerics and solver validation
	Overview of the benchmarks
	Benchmarks assessing the interface capturing method
	Benchmarks assessing the computation of surface tension
	Benchmarks on complex flows

	Definition of criteria
	Criteria used in benchmarks
	Numerical calculation of criteria

	Dimensionless numbers
	An Eulerian velocity-pressure solver to compare to

	Add numerical parameters / elliptic solvers used
	Numerical parameters of the solver

	Content moved to chap6 from other parts of thesis
	Numerical investigations
	Choice of level set reinitialization strategy
	Choice of the surface tension term
	Appearance of trenches
	Choice of tangential filter for the level set field
	Influence of missing term in Thirifay's formulation
	Influence of under-relaxation on simulations' output
	Comparison of elliptic and parabolic vorticity solvers

	Validation of the VPM level set method

	Add convergence study for Vortex-Stretched Bubble
	Validation of surface tension
	Validation of full solver

	Convergence of Rising Bubble B
	Computational efficiency
	Simulations and extension to heat transfer
	VPM method with heat transfer
	Influence of Prandtl number
	Simulation of nuclear-like cases

	Summary

	Conclusions and perspectives
	General conclusion
	Achievements and research results

	Answers to research questions
	Answers to research questions

	Inventaire de mes contributions
	Summary of the work accomplished

	Perspectives
	Perspectives

	Timeline of some methods
	Weno5 schemes
	Algorithms
	Level set
	Hamilton-Jacobi reinitialization
	Fast Marching Method for reinitialization

	VeloGrid: Eulerian velocity-pressure solver
	Vortex Particle-Mesh

	Time-integrators
	Euler-Explicit
	RK2 Midpoint
	Another RK2 time-integrator
	A low storage RK3 time-integrator

	Fluid properties
	Proofs and justification
	Single-fluid VPM method
	Procedure to obtain velocity from vorticity (Eq.2.3)

	Interface capturing VPM method
	Equivalence between Rouy scheme and upwinding
	Level set flip-flop

	Viscous term
	Correct expansion of viscous term (Eq.4.37)

	High mass-density ratio VPM method
	Material acceleration sequence for any time integrator (Eq.5.32)

	Numerics and solver validation
	Volume calculation using mollifier

	Complete rewrite of appendix on viscous term
	Viscous term in vorticity equation

